840.01 Description
This work consists of designing for internal stability, preparing Shop and Engineered Drawings, and fabricating and constructing a mechanically stabilized earth (MSE) wall using an accredited MSE Wall System. This specification supersedes recommendations by the MSE wall system supplier.

840.02 Definitions. For the purposes of this specification, the following definitions are used:

A. MSE Wall System. A retaining wall system that consists of select granular backfill, reinforcing elements, and facing elements connected to the soil reinforcement.

B. Soil Reinforcement. A material placed within a soil mass to increase the strength of the select granular backfill. Soil reinforcement for MSE walls are typically placed horizontally and consist of steel strips, welded wire mesh, or geosynthetics (polymer mesh or strips).

C. Facing Panels. The component of an MSE wall used to contain the Select Granular Backfill in position at the face of the wall. Facing panels for MSE walls are typically made of precast concrete. The term facing panels also includes the precast facing units of modular block wall systems.

D. Connection Device. The item used to connect the soil reinforcement to the facing panel.

E. MSE Wall System Supplier. The Contractor or Consultant that designs the MSE wall system for internal stability and in accordance with the plans, designs the components of the MSE wall system and prepares the Engineered Drawings and Shop Drawings.

F. Accredited MSE Wall System. An MSE wall system approved for use by the Office of Geotechnical Engineering. Each accredited MSE wall system has specific designs for the soil
reinforcement, facing panels, and connection devices. The following table lists the accredited MSE wall systems and the associated MSE wall system suppliers.

TABLE 840.02-1

<table>
<thead>
<tr>
<th>Accredited MSE wall system</th>
<th>MSE wall system supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Earth</td>
<td>The Reinforced Earth Company</td>
</tr>
<tr>
<td>Retained Earth</td>
<td>The Reinforced Earth Company</td>
</tr>
<tr>
<td>MSE Plus</td>
<td>SSL, LLC</td>
</tr>
<tr>
<td>Tricon Retained Soil</td>
<td>Tricon Precast</td>
</tr>
<tr>
<td>ARES</td>
<td>Tensar Earth Technologies</td>
</tr>
<tr>
<td>EarthTrac HA</td>
<td>EarthTec</td>
</tr>
<tr>
<td>GeoMega</td>
<td>The Reinforced Earth Company</td>
</tr>
<tr>
<td>Sine Wall</td>
<td>Sine Wall, LLC</td>
</tr>
<tr>
<td>Sanders MSE</td>
<td>Sanders Precast Concrete Systems</td>
</tr>
<tr>
<td>Redi-Rock Positive Connection</td>
<td>Redi-Rock Structures of OKI</td>
</tr>
</tbody>
</table>

Do not use the Redi-Rock Positive Connection system for MSE walls that support bridge abutments on pile or drilled shaft foundations, or that support barriers on moment slabs.

G. **Precaster.** A manufacturer certified by the Department according to Supplement 1073 to produce precast concrete products. The Precaster furnishes the facing panels for the accredited MSE wall system.

840.03 Materials.

A. **Precast Concrete Facing Panels.** Furnish materials conforming to the following:

- Portland cement 701.02, 701.04, or 701.05
- Reinforcing steel 709.00
- Microsilica 701.10
- Ground granulated blast furnace slag (GGBFS) 701.11
- Fly ash 701.13
- Fine aggregate 703.02
- Coarse aggregate 703.02
- Air-entraining admixture 705.10
- Chemical admixtures 705.12

B. **Soil Reinforcement.** Furnish soil reinforcements and connection devices conforming to the requirements for the appropriate accredited MSE wall system listed below. Provide certified test data for all of the requirements. Refer to the Engineered Drawings for the shape and dimensions of soil reinforcements.

Store soil reinforcements off the ground and protect against weather by covering with tarps. Do not bend steel soil reinforcements after galvanizing.

1. Reinforced Earth
Furnish soil reinforcement consisting of steel strips or ladders. Furnish steel strips conforming to ASTM A572, Grade 65 (ASTM A572M, Grade 450). Furnish ladders conforming to ASTM A1064 (ASTM A1064M). Furnish soil reinforcement galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of tie strips or tie plates conforming to ASTM A1011, Grade 50 (ASTM A1011M, Grade 340) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish bolts conforming to ASTM A325 or ASTM A449. Furnish nuts conforming to ASTM A563 and washers conforming to ASTM F436. Furnish bolts, washers and nuts that are galvanized according to the requirements of ASTM F2329 or ASTM A153 (ASTM A153M).

2. Retained Earth

Furnish soil reinforcement consisting of welded wire mesh conforming to ASTM A1064 (ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of clevis loops and connector rods conforming to ASTM A1064(ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M).

3. MSE Plus

Furnish soil reinforcement consisting of welded wire mesh conforming to ASTM A1064 (ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of loop embeds and connecting pins conforming to ASTM A1064 (ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M).

4. Tricon Retained Soil

Furnish soil reinforcement consisting of welded wire mesh conforming to ASTM A1064 (ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of panel anchors and locking rods conforming to ASTM A1064 (ASTM A1064M) and galvanized according to the requirements of ASTM A123 (ASTM A123M).

5. ARES

Furnish soil reinforcement consisting of high density polyethylene (HDPE) geogrids and connection devices consisting of HDPE geogrids and bodkin bars. Furnish either UX1400MSE, UX1500MSE, UX1600MSE or UX1700MSE geogrids from Tensar Earth Technologies that conform to the following requirements.

<table>
<thead>
<tr>
<th>Minimum Tensile Strength ASTM D6637</th>
<th>UX1400MSE</th>
<th>UX1500MSE</th>
<th>UX1600MSE</th>
<th>UX1700MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,800 lb./ft. (70 kN/m)</td>
<td>7,810 lb./ft. (114 kN/m)</td>
<td>9,870 lb./ft. (144 kN/m)</td>
<td>11,990 lb./ft. (175 kN/m)</td>
<td></td>
</tr>
</tbody>
</table>
6. EarthTrac HA

Furnish soil reinforcement consisting of steel strips conforming to ASTM A572, Grade 50 (ASTM A572M, Grade 345) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of either single lugs conforming to ASTM A572, Grade 50 (ASTM A572M, Grade 345) or double lugs conforming to ASTM A36. Furnish connection devices that are galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish bolts and nuts conforming to ASTM A325 (ASTM A325M) and galvanized according to the requirements of ASTM A153 (ASTM A153M).

7. GeoMega

Furnish soil reinforcement consisting of high tenacity polyester (HTPET) geosynthetic strips encased in a polyethylene sheath and connection devices consisting of injection-molded polypropylene sleeves. Furnish either GS1, GS2, or GS3 geostraps from The Reinforced Earth Company that conform to the following requirements.

TABLE 840.03-2

<table>
<thead>
<tr>
<th></th>
<th>GS1</th>
<th>GS2</th>
<th>GS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Tensile Strength ASTM D6637</td>
<td>8.44 kips (37.5 kN)</td>
<td>11.25 kips (50 kN)</td>
<td>14.62 kips (65 kN)</td>
</tr>
</tbody>
</table>

8. Sine Wall

Furnish soil reinforcement consisting of configured steel strips conforming to ASTM A1011, Grade 65 (ASTM A1011M, Grade 450) and galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devices consisting of configured strip connectors conforming to ASTM A1011, Grade 50 (ASTM A1011M, Grade 340) and galvanized according to AASHTO M 111 (ASTM A123). Furnish bolts conforming to ASTM A325, nuts conforming to ASTM A563, and washers conforming to ASTM F436. Galvanize bolts and nuts according to the requirements of either ASTM F2329 or ASTM A153 (ASTM A153M).

9. Sanders MSE

Furnish soil reinforcement consisting of tabbed steel strips. Furnish steel strips conforming to ASTM A572, Grade 65 (ASTM A572M, Grade 450). Furnish soil reinforcement galvanized according to the requirements of ASTM A123 (ASTM A123M). Furnish connection devises consisting of panel embeds conforming to ASTM A1011, Grade 65 (ASTM A1011, Grade 450), and galvanized according to the requirements of ASTM A123/A123M. Furnish bolts conforming to ASTM A325, nuts conforming to ASTM A563 and washers conforming to ASTM F436. Furnish bolts, nuts, and washers that are galvanized according to the requirements of ASTM F2329 or ASTM A153/A153M.

10. Redi-Rock Positive Connection

Furnish soil reinforcements consisting of multifilament high tenacity polyester (HTPET) yarns woven in tension to form a geogrid finished with a polyvinyl-chloride coating. Furnish 12-
inch wide, ± ½ in., (305 mm, ±13 mm) geogrid strips of either Miragrid 5XT, 8XT, 10XT, 20XT, or 24XT from TenCate Geosynthetics that conform to the following requirements.

TABLE 840.03-3

<table>
<thead>
<tr>
<th></th>
<th>5XT</th>
<th>8XT</th>
<th>10XT</th>
<th>20XT</th>
<th>24XT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Tensile</td>
<td>4.7 kips/ft.</td>
<td>7.4 kips/ft.</td>
<td>9.5 kips/ft.</td>
<td>13.7 kips/ft.</td>
<td>27.4 kips/ft.</td>
</tr>
<tr>
<td>Strength (MARV)</td>
<td>(69 kN/m)</td>
<td>(108 kN/m)</td>
<td>(139 kN/m)</td>
<td>(200 kN/m)</td>
<td>(400 kN/m)</td>
</tr>
<tr>
<td>ASTM D6637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Bearing Pads.
Furnish bearing pads that will provide a long term horizontal joint spacing of at least 3/8 inch (10 mm). Provide bearing pads to the dimensions shown in the Engineered Drawings.

D. Facing Panel Joint Cover.
Furnish a woven, 100 percent monofilament, geotextile fabric conforming to AASHTO M 288 Table 1, Class 2 less than 50 percent elongation; with UV stability (retained strength) according to ASTM D4355 of 90 percent after 500 hours, and conforming to AASHTO M 288 Table 2 requirements for less than 15 percent in situ soil passing 0.075 mm sieve. Provide certified test data for the geotextile fabric.

Furnish an adhesive that secures the fabric to the wall during construction. Use a minimum geotextile fabric width of 18 inches (455 mm). Before installation, protect the geotextile fabric from exposure to direct sunlight.

E. Select Granular Backfill.
Furnish select granular backfill (SGB) material conforming to either 703.17, Aggregate Materials for 304, or 703.11, Structural Backfill Type 2, and the requirements listed below.

1. Do not use slag materials or recycled Portland cement concrete.

2. Ensure the SGB material has an internal angle of friction equal to or greater than 34 degrees when tested according to AASHTO T 236 and the following requirements:
 a. Obtain the test sample from the portion of the SGB material which passes a No. 10 sieve.
 b. Determine the maximum dry density and optimum moisture of the test sample according to AASHTO T 99, Method A.
 c. Compact the sample for direct shear testing to 98 percent of the maximum dry density and within one percent of optimum moisture content as determined in 840.03.E.2.b.
 d. Perform the direct shear test three times at normal stresses of 10, 20, and 40 pounds per square inch (70, 140, 280 kPa).
 e. Plot the maximum shear stress versus the normal stress for each test. Draw a straight line that is a best fit to the three points using the least-squares method. Determine the internal angle of friction by measuring the angle of the best fit line from horizontal.
If the internal angle of friction is less than 34 degrees and the SGB has a significant amount of material retained on the No. 10 sieve, then the Contractor may submit an alternate shear test procedure that includes the material larger than the No. 10 sieve in the test sample.

3. For MSE wall systems that use steel soil reinforcements and connection devices, ensure that the SGB material meets the following requirements:
 a. A pH between 5.0 and 10.0 when tested according to AASHTO T 289.
 b. A resistivity greater than 3000 ohm-cm when tested according to AASHTO T 288. If the SGB material has a resistivity greater than 5000 ohm-cm, the Department will waive testing for chloride and sulfate levels.
 c. A chloride level less than 100 ppm when tested according to AASHTO T 291.
 d. A sulfate level less than 200 ppm when tested according to AASHTO T 290.

4. For MSE wall systems that use geosynthetic soil reinforcement, ensure that the SGB material meets the following requirements:
 a. A pH between 4.5 and 9.0 when tested according to AASHTO T 289

Obtain all acceptance samples from the material stockpile.

Thirty days before the MSE wall construction, provide certified test data from an independent testing laboratory that verifies the SGB material meets all requirements. The Engineer will conditionally accept the SGB material based upon a visual inspection of the SGB material and a review of the certified test data. Final acceptance of SGB material will be based on testing of quality assurance samples by the Department to verify that the certified test data is accurate. Verification direct shear testing will be performed at the discretion of the Department. The Engineer will sample the SGB material when the SGB material is delivered to the project before it is placed in the MSE wall. The Engineer will provide the sample and the certified test data to the Office of Materials Management.

F. Backfill Drainage Material. Furnish materials conforming to:

 Plastic Pipe..707.33
 Geotextile Fabric, Type A ...712.09

Furnish porous backfill consisting of gravel or stone with a No. 57 size gradation according to Table 703.01-1. Use material with a sodium sulfate soundness loss less than 15 percent (5 cycle) when tested according to AASHTO T 104.

Furnish bedding and backfill for non-perforated pipe consisting of natural sand, gravel or sand manufactured from stone conforming to 703.11, Structural Backfill Type 2, except 100 percent of the material shall pass through a ¾-inch (19.0 mm) sieve.

For perforated pipe installed within the SGB, the Contractor may furnish fabric-wrapped perforated pipe instead of wrapping fabric around the perforated pipe in the field. The fabric-wrapped perforated pipe must come from the supplier with the fabric completely surrounding the
pipe and securely attached to the pipe. Ensure that the pipe and fabric meet the above requirements. The Department will accept certified test data for the fabric on fabric-wrapped perforated pipe in place of NTPEP test data.

G. **Foundation Preparation Materials.**

Furnish crushed carbonate stone, gravel, durable sandstone, durable siltstone, or granulated slag conforming to 703.16.C, Granular Material Type C.

H. **Concrete Coping.** Furnish materials conforming to:

- Concrete, Class QC-1 ...499
- Epoxy coated reinforcing steel ...709.00
- Preformed expansion joint filler ...705.03

I. **Leveling Pad.** Furnish Class QC-1 Concrete according to Item 511.

J. **Concrete Sealer.** Furnish epoxy-urethane sealer conforming to 705.23.A.

K. **Pile Sleeves Materials.**

1. Plastic Pipe. Furnish corrugated polyethylene smooth lined pipe conforming to either 707.33 or ASTM F2648, or PVC corrugated smooth interior pipe conforming to 707.42. Furnish sleeves with an inside diameter at least 2 inches (50 mm) greater than the pile’s diameter or diagonal dimension.

 If furnishing plastic pipe manufactured from recycled polyethylene, submit certified test data that shows the pipe conforms with ASTM F2648. Clearly mark all pipe manufactured from recycled polyethylene so that it is used only for pile sleeves on the project.

2. Granular Fill. Furnish granular material conforming to 703.11, Structural Backfill Type 2, except 100 percent of the material shall pass through a ¾-inch (19.0 mm) sieve.

L. **Natural Soil.** Furnish A-4a, A-6 or A-7-6 natural soil meeting the requirements of 203.02.I.

M. **Cap Unit Adhesive.** Furnish an exterior grade, concrete bonding adhesive recommended by the MSE Wall System Supplier to secure cap units to modular block units.

840.04 **Design and Submittal Requirements.**

A. **Design Requirements.** Design the MSE wall conforming to the requirements listed below and either Section 5.8 of the AASHTO Standard Specifications for Highway Bridges, 17th edition, 2002, (AASHTO 2002) or Section 11.10 of the AASHTO LRFD Bridge Design Specifications, (AASHTO LRFD). Use the same version of the AASHTO design specifications as used to develop the plans. In the event of a conflict between this specification and the AASHTO specification, this specification will govern.

 1. Only use an accredited MSE wall system. Use only one soil reinforcement system for the entire length of the retaining wall.
2. Unless a longer minimum soil reinforcement length is given in the plans, provide soil reinforcement with a length that is equal to 70 percent of the wall height but not less than 8 feet (2.4 m). If the wall will be located at an abutment, measure the wall height from the top of the leveling pad to the profile grade elevation at the face of the wall. For all other walls, measure the wall height from the top of the leveling pad to the top of the coping.

3. Use the following soil parameters in the design. These parameters are not to be used for material acceptance.

TABLE 840.04-1

<table>
<thead>
<tr>
<th>Fill Zone</th>
<th>Type of Soil</th>
<th>Design Soil Unit Weight</th>
<th>Friction Angle</th>
<th>Cohesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Soil</td>
<td>Select Granular Backfill</td>
<td>120 lbs./ft(^3) (18.9 kN/m(^3))</td>
<td>34(^\circ)</td>
<td>0</td>
</tr>
<tr>
<td>Retained Soil (Soil behind the Reinforced Soil Zone)</td>
<td>On-site soil varying from sandy lean clay to silty sand</td>
<td>120 lbs./ft(^3) (18.9 kN/m(^3))</td>
<td>30(^\circ)</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Use the simplified method or the coherent gravity method for internal stability calculations. The coherent gravity method as described in AASHTO LRFD may also be used for a design otherwise conforming to AASHTO 2002.

5. Include a live load surcharge of 250 psf (12.0 kPa) unless the backfill above the wall is sloped steeper than 4H:1V. Include a live load surcharge even if there is an approach slab at the bridge abutment.

6. Assume a water level within the reinforced soil at the invert elevation of the drainage pipe.

7. Use the following reduction factor values for geosynthetic soil reinforcement.

TABLE 840.04-2

<table>
<thead>
<tr>
<th>Accredited MSE Wall System</th>
<th>Soil Reinforcement</th>
<th>Installation Damage RF(_{ID})</th>
<th>Creep RF(_{CR})</th>
<th>Durability RF(_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARES</td>
<td>UX1400MSE</td>
<td>1.25</td>
<td>2.59</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>UX1500MSE</td>
<td></td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UX1600MSE</td>
<td></td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UX1700MSE</td>
<td></td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>GeoMega</td>
<td>GS1, GS2, GS3</td>
<td>1.1</td>
<td>1.64</td>
<td>1.14</td>
</tr>
<tr>
<td>Redi-Rock</td>
<td>5XT, 8XT, 10XT</td>
<td>1.6</td>
<td>1.66</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>20XT, 24XT</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Provide a design life of 100 years.
9. Use a 9-foot (2.75 m) minimum length of wall between leveling pad elevation changes. Design the facing panel overhang at the end of the leveling pad of less than 6 inches (150 mm). Do not design vertical steps in the leveling pad greater than 2.5 feet (0.75 m).

10. Use standard panels with maximum dimensions of 5 ft. high × 10 ft. wide (1.52 × 3.05 m). Special panels along the top and bottom of the wall may have maximum dimensions of 7 ft. high × 10 ft. wide (2.13 × 3.05 m).

11. a. Panel Wall Systems. Use a separate corner element when two wall sections meet with an interior angle of 130 degrees or less. Do not place two facing panels next to each other with an interior angle of 130 degrees or less. Design the corner element to overlap the adjoining facing panels. Attach soil reinforcements to the corner element.

 b. Modular Block Wall Systems. Use a separate corner element when two wall sections meet at with an interior angle of 90 degrees. For radial corners, do not place two adjacent modular blocks next to each other at an angle that causes a gap in the vertical joint at the face of the wall.

12. Design the wall to provide a coping as shown on the plans. Provide joints in the coping no more than every 20 feet (6 m) along the length of the wall. Locate coping joints to align with the joints between facing panels. For modular block walls, design precast cap units placed end-to-end without gaps.

13. Do not provide a design that bends steel strips or geosynthetic strips. Splaying steel strips up to 15 degrees and geosynthetic strips up to 5 degrees from perpendicular to the facing panel without bending in order to avoid obstacles in the reinforced soil zone is acceptable. Otherwise, provide a special design to avoid the obstacle, such as a structural frame or attaching steel angles to panels. Show the details of the special design in the drawings.

14. Design battered modular block walls to accommodate lateral and vertical limits, clearances, geometry, and boundaries provided by the contract documents.

B. Submittal of Engineered Drawings, Shop Drawings and Calculations. Prepare design calculations according to the above requirements. Prepare Engineered Drawings of the wall construction and Shop Drawings of the facing panel fabrication and include at least the following information in the drawings:

1. A site plan for the full length of the retaining wall that shows:

 a. Station and offset at the face of the wall measured from the centerline of construction for the ends of the wall and any changes in wall alignment, obtained from the contract documents.

 b. Horizontal and vertical curve data for curved walls as outlined and shown on the contract documents.

 c. Limits of soil reinforcement.

 d. All obstructions to the soil reinforcement, such as piling or catch basins.

2. An elevation view for the full length of the retaining wall that shows:
a. Location of each individually labeled facing panel.

b. Elevations at the ends of the wall and any changes in elevation at the top or bottom of the wall.

c. Required soil reinforcement lengths and locations.

3. Representative cross-sections at each design change.

4. Design details to avoid obstacles in the reinforced soil zone, such as splaying, panel steel angles or structural frames.

5. Shop Drawings for fabrication of the facing panels that show:
 a. The Precaster who will produce the facing panels.
 b. Minimum concrete compressive strength at 28 days and for form removal.
 c. Dimensions and tolerances.
 d. Soil reinforcement connection details and locations in the facing panels.
 e. Reinforcing steel locations, sizes, lengths, type and bending diagrams.
 f. Aesthetic surface treatment details and limits, obtained from the contract documents. Aesthetic treatment limits extend from the top of the leveling pad to the top of the uppermost facing panel, unless otherwise indicated.
 g. If the plan design calls for MSE Wall alignment on a horizontal curve, then chamfer the back panels along the back vertical joints to maintain the front panel joint tolerance in 840.06.G.

6. Wall drainage details, including:
 a. Location and elevation of drainage pipe and outlets, obtained from the contract documents.
 b. Locations and details of any required penetrations in the facing panels, obtained from the contract documents.

7. Actual bearing pressures.

8. Allowable bearing capacity, obtained from the contract documents.

10. Angle of internal friction used for the design.

11. Construction manual for the accredited MSE wall system.
12. Revised quantity of select granular backfill based on the length of soil reinforcement used in the design. Compare revised quantity to the estimated quantity of select granular backfill in the plans and indicate the difference.

Only include details, notes, panel types, and other items on the drawings that apply to the project. Do not include generic details, notes, or designs for standard panel types that are not used on the project.

Have competent individuals prepare the Engineered Drawings, Shop Drawings, and design calculations. Have competent individuals check each drawing and the calculations. The preparers and checkers shall initial each sheet and shall be different individuals. Provide, on the cover sheets, the first name, last name and initials of each preparer and checker performing work on the drawings and calculations. Have an Ohio Registered Engineer sign, seal, and date the Engineered Drawings, Shop Drawings, calculations, and the acceptance letter provided in Appendix A according to ORC 4733 and OAC 4733-35 confirming that the submittals meet the intent of the contract. If multiple preparers or multiple checkers created the submittals, then the cover sheets shall clearly indicated the portions for which each person is responsible. Submit two copies of the drawings, calculations and acceptance letter to the Engineer at least 15 days before any part of wall construction begins. Submit drawings on 11\times17 inch paper, and calculations on 8\frac{1}{2}\times11 inch paper. Also submit drawings and calculations in electronic PDF format. The Engineer will submit the drawings, calculations, and acceptance letter to the Office of Construction Administration.

Ensure all submittals meet the requirements for materials, design, and construction. Ensure all required field measurements are made and included in the drawings. Coordinate all details of the work to be performed by other entities on the project. The Department will not make allowance for additional cost or delays to the Contractor for incorrect fabrication as a result of failure to perform this coordination.

The Engineer will provide a written response to the submittal in accordance with 105.02. Do not begin work until the Engineer's acceptance has been received.

840.05 Fabrication and Acceptance of Precast Concrete Facing Panels. Provide precast concrete facing panels from a precast concrete producer certified under Supplement 1073. Do not start facing panel fabrication until any comments concerning the Shop Drawings, Engineered Drawings, and design calculations submittal have been resolved.

A. Concrete Proportioning. Proportion a concrete mix design that provides the minimum compressive strength required in the Shop Drawings and the minimum over design of ACI 318 and conforms to the air content requirements of Supplement 1073.

B. Form Inspection. Before casting, measure all forms for tolerances defined in 840.05.G and document the measurements. Reject any forms not within tolerances.

C. Casting. Before casting, place the reinforcing steel, soil reinforcement connection devices, lifting elements, and coping dowels at the locations shown on the Shop Drawings and to the tolerances specified below. Design the lifting elements to eliminate concrete spalling during handling. Cast the panels on a flat area, with the front face down. Use clear form oil approved by the MSE wall system supplier and do not substitute the form oil after the casting operation begins.
Leave all forms in place until the concrete panel can be removed without damage. Use the Shop Drawings to define the minimum compressive strength required for form removal. Test and record the strength of the concrete before removing the forms.

D. Curing. Use the curing method recommended by the MSE wall system supplier. Cure the concrete sufficiently to develop the minimum compressive strength required in the Shop Drawings.

E. Concrete Testing. During facing panel production, randomly sample the concrete and test according to ASTM C 172 and Supplement 1073. A single compressive strength sample consists of at least four test cylinders for each production lot. A production lot is either 40 panels or a single day’s production, whichever is less. Perform compressive strength testing according to Supplement 1073.

F. Concrete Finish and Aesthetic Treatment. If an aesthetic surface treatment is shown in the plans or Shop Drawings, cast it into the front face of the panels. If an aesthetic surface treatment is not required, finish the front face of the panels to a smooth surface. Finish the back face of the panels to a uniform surface, free of open pockets of aggregate. Ensure that both faces conform to the tolerances specified below.

G. Panel Dimensions and Tolerances. Fabricate the panels with a minimum thickness of 5 ½ inches (140 mm). The minimum thickness does not include the aesthetic surface treatments. Use the tolerances in Table 840.05-1.

<table>
<thead>
<tr>
<th>TABLE 840.05-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel dimensions</td>
</tr>
<tr>
<td>Block height (vertical dimension)</td>
</tr>
<tr>
<td>Block length (horizontal dimension parallel to wall face)</td>
</tr>
<tr>
<td>Block width (horizontal dimension perpendicular to wall face)</td>
</tr>
<tr>
<td>Panel/Block squareness (difference between two diagonals)</td>
</tr>
<tr>
<td>Panel thickness</td>
</tr>
<tr>
<td>Location of soil reinforcement connection device or core slot</td>
</tr>
<tr>
<td>Panel/Block surface defects (size of surface defect measured over a length of 5 ft. (1.5 m))</td>
</tr>
<tr>
<td>Smooth formed finish</td>
</tr>
<tr>
<td>Textured finish</td>
</tr>
<tr>
<td>Position of reinforcing steel</td>
</tr>
</tbody>
</table>

Inspect and document that the panels are dimensionally correct; that the soil reinforcement connection devices are at the locations shown on the Shop Drawings; that the panel finishes are correct; that concrete’s form removal and final strength meet requirements shown on the Shop Drawings; and that all tolerances have been met.

H. Precast Panel Rejection, at the plant and field site. Reject panels having any of the following:

1. Defects that indicate imperfect molding.
2. Defects that indicate honeycombed or open texture concrete.

3. Defects in the physical characteristics of the concrete, or damage to the aesthetic surface treatments.

4. Concrete chips or spalls that exceed 4 inches (100 mm) wide or 2 inches (50 mm) deep. Repair all chips and spalls that are smaller.

5. Stained form faces, due to form oil, curing or other contaminants.

6. Signs of aggregate segregation.

7. Cracks wider than 0.01 inch (0.25 mm) or penetrating more than 1 inch or longer than 12 inches (300 mm).

8. Facing panels that do not meet the specified tolerances.

9. Damaged soil reinforcement or connection devices, including connection devices bent more than 15 degrees.

10. Unusable lifting inserts.

11. Exposed reinforcing steel.

12. Insufficient concrete compressive strength.

I. Panel Markings. Permanently mark the back surface of each panel with the date of manufacture, the panel identification from the Shop Drawings, the production lot number, and the precaster’s inspection and acceptance mark. The precaster’s marks represent the panel meets all specification requirements.

The precaster shall maintain record fabrication drawings according to Supplement 1073 and this specification for each panel design produced.

J. Handling, Storing and Shipping Panels. Handle, store, and ship panels to avoid chipping, cracking and fracturing the panels; excessive bending stresses; and damaging the soil reinforcement connection devices. Support panels on firm blocking while storing and shipping.

Do not ship panels until concrete has attained the required compressive strength.

Submit 840.05.G shipment documentation to the Engineer as the facing panels are delivered to the project along with the TE-24 shipping document.

840.06 Construction.

A. MSE Wall Preconstruction Meeting. Request a meeting at least 15 days before wall construction begins and after the Department has accepted the Engineered Drawings and design calculations. Have a representative from the accredited MSE wall system supplier attend the meeting. Provide a complete written sequence of construction at the meeting and review the
sequence, any construction issues, the specifications and the accredited MSE wall system requirements. Determine any issues that need to be resolved for construction. Resolve those issues.

During the MSE wall preconstruction meeting, request sampling of the SGB for verification acceptance.

B. Facing Panel Inspection. Inspect all facing panels for any damage and reject panels according to 840.05.H. Provide acceptable replacement panels for any panels rejected. Either replace panels or document the damage and propose to the Engineer a complete repair method for the damaged panel.

C. Wall Excavation. Excavate to the limits shown in the plans. Remove unsuitable foundation soils to the limits shown in the plans. Wall excavation is unclassified and includes any rock or shale encountered. Dewater the excavation if water is encountered. Develop and implement a plan to protect the open excavation from surface drainage during construction and until the wall is placed. Protect the excavation against collapse. Dispose of materials not required or suitable for use elsewhere on the project.

D. Foundation Preparation. Level the bottom of the excavation. The Department will inspect the foundation to verify that the subsurface conditions are the same as those anticipated during the design.

After the foundation has been accepted, spread, place and compact 12 inches (300 mm) of granular material type C according to the requirements of 204.07.

E. Leveling Pad Construction. Construct the concrete leveling pad using unreinforced, cast-in-place concrete. Do not use precast leveling pads. The leveling pad shall be 6 inches (150 mm) thick and 24 inches (610 mm) wide for a panel wall system or 40 inches (1020 mm) wide for a modular block wall system. Cure the concrete and do not start wall erection until specimen beams have attained a modulus of rupture of 400 pounds per square inch (4.2 MPa).

Construct all leveling pads so the top of the pad is within 1/8 inch (3 mm) of the elevation shown on the drawings. Construct the pads so the surface does not vary more than 1/8 inch in 10 feet (3 mm in 3 m). Check the leveling pad construction before wall erection and report the elevations and surface variation to the Engineer.

If the design calls for a change in the leveling pad elevation (i.e. steps), then construct the leveling pad so the facing panel extends no more than 6 inches (150 mm) beyond the end of the leveling pad.

F. Wall Drainage. Install drainage as shown on the plans. Use perforated pipe within the wall limits and non-perforated pipe outside the wall limits. Provide banded or sealed joints. Slope the drainage pipe to provide positive drainage. If it is not possible to outlet the drainage pipe, then notify the Engineer.

Where perforated pipe is surrounded by select granular backfill (SGB), use fabric-wrapped perforated pipe or wrap the fabric around the perforated pipe, overlapping the ends of the fabric at least 9 inches (230 mm). Porous backfill is not required in these locations.
Where perforated pipe is located outside the limits of the SGB, completely surround the perforated pipe with porous backfill. Provide at least 2 inches (50 mm) of porous backfill on all sides of the perforated pipe. Vibrate, tamp, or compact the porous backfill to approximately 85 percent of the original layer thickness. Completely wrap the porous backfill with fabric to prevent piping. Use a 1 foot (0.3 m) overlap for the fabric.

Place and compact the bedding and backfill material for non-perforated pipe according to Item 611.

If water collects in the excavation at any time, then remove the water from the excavation immediately.

G. Wall Erection.

1. Panel Wall Systems. Place facing panels in the sequence shown on the drawings. Lift panels using the lifting devices set into the upper edge of each panel. Place the initial row of panels on the centerline of the leveling pad and level the panel. Use shims to level the panels. If the shim height is greater than 3/8 inch (10 mm) start the erection over. Do not use bearing pads to level the panels. Do not install panels that overhang the leveling pad transversely. Reconstruct the leveling pad if the panels are transversely overhanging.

Facing panels are allowed to extend beyond the end of the leveling pad up to 6 inches (150 mm) when the leveling pad changes elevation. Fill the void with SGB immediately after the first row of panels are set, wedged, braced and clamped.

Starting with the second row of panels, install at least two bearing pads per panel, uniformly spaced, to properly construct the panels’ horizontal joint. After each panel has been placed, ensure the panel is horizontally level.

Construct the panels so the horizontal and vertical joints are ½ to 1 inch (13 to 25 mm) wide. Use ¾ inch (19 mm) spacers to control the joint spacing. Once the joint spacing is achieved, record the joint gap on the drawings and present this information to the Engineer once a week. If the required joint spacing is not achieved, then make the required corrective action.

The Engineer will hold a flashlight perpendicular to the facing panel to determine if the Facing Panel Joint Cover fabric is exposed. If the fabric is exposed, then the joint is unacceptable. Submit a repair method to the Department for protecting the fabric.

Initially, batter the panels back an appropriate amount so that the final vertical position is achieved.

Use external bracing as necessary to stabilize and batter the first panel lift and any other panel lifts requiring external stability. Place panels and backfill in successive horizontal lifts according to the sequence shown on the drawings.

Once the panels have been erected and the SGB placed to a height matching the outside proposed ground elevation, fill the outside embankment immediately. Follow the requirements of Item 203 for this work. If water has ponded in front of the wall, then pump the water out prior to constructing the embankment.
Maintain the panels in their vertical and battered position by means of temporary wood wedges and clamps placed at the panel joints. Check vertical tolerances with a 6-foot (2 m) level. Check the panel to panel horizontal tolerance with a 6-foot (2 m) straightedge. Do not release the panel from the lifting device until the position of the panel has been checked and the wedges and clamps are in place.

After compacting the backfill behind each row of panels, check the horizontal and vertical alignment of the wall and make adjustments as required. Remove the clamps prior to placing the next row of panels and after the vertical and horizontal alignment is checked.

Do not exceed a vertical and horizontal alignment tolerance of \(\frac{1}{2} \) inch (13 mm) at any point along a 10-foot (3 m) straight edge placed against the wall. Do not construct any panel more than \(\frac{1}{2} \) inch (13 mm) out of vertical or horizontal alignment from the adjacent panels. Do not exceed the final overall vertical tolerance of the wall (plumbness from top to bottom) of \(\frac{1}{2} \) inch (13 mm) per 10 feet (3 m) of wall height. Starting with the third row of panels, use a plumb bob to check the overall vertical tolerances for every panel. Continuously monitor the batter, alignment and tolerances. Make adjustments as required. For portions of a wall over 30 feet (9 meters) in height, record the plumbness measurement for each panel on the drawings and present this information to the Engineer once a week.

Do not pull on the soil reinforcement to align the panels.

Remove the wedges as soon as the second panel above the wedged panel is completely erected and backfilled.

Install the Facing Panel Joint Cover geotextile fabric strip over each horizontal and vertical panel joint. Center the fabric over the joint. Use a minimum 12-inch (300 mm) lap between cut sections of the fabric. Clean the concrete to remove dirt by using a brush before applying the adhesive and fabric. Place the fabric so it covers the horizontal and vertical joints by 6 inches (150 mm) on each side of the joint. Attach the fabric to the back of the facing panel using an adhesive that securely bonds the fabric to the facing panel. Apply adhesive to the wall or the fabric for the full perimeter of the installed length and width of the geotextile strip. Follow the adhesive manufacturer’s temperature recommendations.

When the fabric is placed around a slip joint, allow some horizontal slack in the fabric to allow for movement.

2. **Modular Block Wall System.** Place the modular block units in the sequence shown on the drawings. Place the first course level with the front face edges tightly abutted together, with the bottom of the modular block units in full contact with the leveling pad and properly aligned on the prepared leveling pad at the locations and elevations shown on the drawings.

Do not install modular blocks that overhang the leveling pad transversely. Reconstruct the leveling pad if the modular blocks are transversely overhanging. Blocks are allowed to extend beyond the end of the leveling pad up to 6 inches (150 mm) when the leveling pad changes elevation. Fill the void with SGB immediately after the first row of blocks are set.

Place a 12-inch by 18-inch (300 mm by 450 mm) precut piece of geotextile fabric, conforming to 840.03.D, behind the vertical joints between adjacent modular blocks. Use a \(\frac{1}{2} \)-
inch (13 mm) diameter rod or similar device to tamp the fabric to implant it along the architectural
face form line of the adjacent blocks. Orient the long dimension of the fabric to be parallel to and
to completely cover the vertical joint.

Place Porous Backfill drainage material in a maximum lift thickness of 8 inches (200 mm) to a minimum distance of 1 foot (0.3 m) behind the modular block units and in the joint between adjacent blocks. Consolidate the backfill between the blocks by hand tamping. Compact the porous backfill by a minimum of three passes of a vibratory plate compactor that applies a centrifugal force between ½ to 2 tons (0.6 to 2.2 metric tons).

Place a strip of Geotextile Fabric, Type A, between the Porous Backfill and the SGB in the reinforced soil zone as shown on the drawings.

Complete the installation of the soil reinforcement, core fill, porous backfill, geotextile fabrics, and SGB prior to placing the next course of modular blocks.

Starting with the second course, broom-clean the top of the modular blocks prior to placement of subsequent blocks. Install subsequent courses of blocks in a running bond pattern (half block horizontal course-to-course offset). With the exception of corner units, fully engage the shear channel of the upper blocks with the shear knobs of the lower blocks. Push the upper blocks toward the wall face to fully engage the interface shear key between the blocks and to ensure consistent face batter and wall alignment.

Do not use shims, wedges, bearing pads, or spacers to adjust alignment or level. Use shims less than 1/8 inch thick (3 mm) to eliminate rocking of an overlying block on the underlying blocks that are otherwise within dimensional tolerance limits.

Do not pull on soil reinforcement to align modular block units.

Backfill in front of the lower block courses prior to placement of subsequent modular block courses. Follow the requirements of Item 203 for this work. If water has ponded in front of the wall, then pump the water out prior to constructing the embankment.

Maintain the elevation of retained fill to be less than 18 inches (450 mm) below the elevation of the reinforced SGB throughout the construction of the retaining wall.

Do not exceed a deviation from the design batter and horizontal alignment of ½ inch (13 mm) at any point along a 10-foot (3 m) straight wall section. Do not exceed a deviation from the overall design batter of more than ½ inch (13 mm) between adjacent blocks. Do not construct any block more than ½ inch (13 mm) out of horizontal alignment from adjacent blocks.

H. Soil Reinforcement Installation.

1. Panel Wall System. Place the soil reinforcement perpendicular to the facing panel unless otherwise shown on the drawings. If steel soil reinforcement cannot be placed perpendicular to the wall, then it may be splayed up to 15 degrees. The transverse wires of welded wire mesh may be cut in order to splay the soil reinforcement. If more than a 15 degree splay is required to place the soil reinforcement, then a special design is required on the drawings. If a situation is encountered in the field that was not accounted for on the drawings, notify the Engineer.
If bolts are used to connect the soil reinforcement to the facing panel, then place the bolts in the connection from the bottom and attach the washer and nut. Tighten the bolt with a wrench or socket.

If loops and a pin are used to connect the soil reinforcement to the facing panel, then place the pin through all of the loops. Place wooden wedges between the pin and the panel to remove any slack in the connection. Ensure the pin and loops are in contact with each other.

Before placing SGB over the soil reinforcements ensure that:

a. The soil reinforcement matches what is shown on the drawings.

b. The soil reinforcement is continuous from the panel to the end of the reinforced soil zone.

c. The soil reinforcement is connected to the panel correctly. Replace the panel if necessary to correctly connect the soil reinforcement.

d. For geosynthetic reinforcements, ensure the soil reinforcement is pulled taut to eliminate wrinkles or folds and held in place during placement of the SGB.

Do not cut or splice steel soil reinforcements. Do not operate equipment directly on the soil reinforcements.

2. Modular Block Wall System. Install soil reinforcement of the type and at the locations and elevations shown on the drawings. Cut soil reinforcement strips to length from rolls of geogrid reinforcement provided by the MSE Wall System Supplier. The cut length is two times the reinforcement embedment length shown on the drawings plus an additional 3-foot (1.0 m) length through the core slot of the modular block. Ensure that the soil reinforcement strip is continuous throughout its entire length and is not spliced. Do not cut the geogrid reinforcement strips to width from wider rolls.

Thread the reinforcement strip through the vertical core slot from the bottom of the modular block and pull approximately half of the length of the strip up through the core slot. Measure from the back of the modular block unit to the required design length and secure the end of the bottom leg of the strip with staples, stakes, or SGB material. Pull the strip tight through the vertical core slot to remove any slack, wrinkles, or folds. Temporarily secure the strip firmly in place by putting a pin through the geogrid and the steel lifting inserts located in the recessed area on the top of the modular block.

Place the reinforcement strip perpendicular to the modular block except in areas specifically designated on the drawings. When strips are intended to be splayed to avoid obstructions in the reinforced soil zone, splay the top leg of geogrid and bottom leg of geogrid the same amount in opposite directions to maintain equal tension on all main reinforcement (longitudinal) strands in the geogrid. The maximum splay angle is 5 degrees. If more than a 5 degree splay is required to place the soil reinforcement, then a special design is required on the drawings.
After placing the SGB on the bottom leg of the reinforcement strip, fill the vertical core slot with Porous Backfill. Maintain the strip flat against the back of the vertical core slot during backfill placement. Consolidate the backfill by hand tamping. Do not operate a vibrating plate compactor on top of the modular block.

When SGB has been placed and compacted to the elevation of the reinforcement strip at the top of the modular block, extend the top leg of the strip to the design length required. Pull the strip tight to remove any slack, wrinkles, or folds and secure the end of the top leg of the strip with staples, stakes, or SGB.

Do not operate equipment directly on the soil reinforcements. Limit the speed of equipment on the SGB to less than 5 mph. Avoid sudden braking and turning of equipment.

I. Select Granular Backfill Placement. Transport and handle the Select Granular Backfill (SGB) in a manner that minimizes the segregation of the material. Use the following procedure for placing and compacting the SGB.

1. Place and compact the initial lifts of SGB until it is about 2 inches (50 mm) above the connection for the bottom layer of soil reinforcement. For MSE wall systems that use steel soil reinforcement or geosynthetic strips, do not place SGB against the initial row of panels yet. This is Item 1 in Figure 840.06-1. For MSE wall systems that use geogrid soil reinforcements, place the SGB against the initial row of panels and lightly compact it.

2. Connect the soil reinforcement and place an 8-inch (200 mm) loose lift of SGB on top of it (Item 2 in Figure 840.06-1). Place and compact the SGB at least 3 feet (1.0 m) away from the facing panels and moving parallel to the panels. Continue to place and compact the lift of SGB with additional passes moving away from the panels towards the free end of the soil reinforcement. See Figure 840.06-2.

3. Place SGB between the initial row of facing panels and the previously placed SGB. Place the SGB in one lift until it is about 8 inches (200 mm) above the soil reinforcement (Item 3 in Figure 840.06-1). Compact the material with six passes of a mechanical tamper or vibratory plate compactor that applies an impact or centrifugal force between ½ to 2 tons (0.6 to 2.2 metric tons). Do not perform compaction testing on the material within 3 feet (1.0 m) of the facing panels.
4. Place and compact additional lifts of SGB at least 3 feet (1.0 m) away from the facing panels and moving parallel to the panels. Continue to place and compact each lift of the SGB with additional passes moving away from the panels towards the free end of the soil reinforcement. See Figure 840.06-2.

![Figure 840.06-2 Procedure for SGB Placement and Compaction (Plan View)](image)

5. Place and compact SGB in the 3-foot (1 m) area between the facing panels and the previous lift of SGB. Compact the material with six passes of a mechanical tamper or vibratory plate compactor that applies an impact or centrifugal force between ½ to 2 tons (0.6 to 2.2 metric tons). Do not perform compaction testing on the material within 3 feet (1.0 m) of the facing panels.

![Figure 840.06-3 SGB Placement and Compaction Next to Facing Panels (Plan View)](image)
6. When the SGB reaches the next layer of soil reinforcement, place the SGB that is more than 3 feet (1 m) away from the facing panels to a level 2 inches (50 mm) above the soil reinforcement connection. Slope the SGB that is within 3 feet (1 m) of the facing panels as shown in Figure 840.06-4.

7. Repeat steps 4 through 6 until placement of the SGB and soil reinforcements is complete.

For modular block wall systems, place the SGB material directly behind the Porous Backfill drainage material to the end of the soil reinforcement. Separate placement of SGB in the 3-foot area behind the modular blocks, as shown in the above Figures, is not required in Steps 2 through 5. Compact the material in this area in accordance with Step 3.

Except as stated otherwise in the procedure above, place and compact the SGB as follows. Place the SGB in loose lifts no greater than 8 inches (200 mm) thick. Compact SGB using a vibratory roller with a static weight between 6 to 10 tons (7 and 11 metric tons). Operate compaction equipment in a direction parallel to the facing panels. Test the compaction according to Supplement 1015. Use either Test Section Method A or B according to Supplement 1015 and 203.07. Sample the SGB material and create a moisture density curve according to AASHTO T 99, Method C for each type and source of material. Compact the SGB to a minimum of 98 percent of the test section maximum dry density.

Do not disturb, damage, or distort soil reinforcements, facing panels or joint coverings during compaction.

At the end of each day’s operations, shape the last lift of SGB to direct rain water runoff away from the wall face. Prevent surface drainage from adjacent areas from entering the wall construction site.

J. Pile Sleeves. When piles are located within the reinforced soil zone, install pile sleeves during MSE wall construction. Place the bottom of the sleeves at the bottom of the SGB or at the bottom of the undercut whichever is deeper. Maintain the vertical alignment of the pile sleeve during construction of the MSE wall. After driving the pile, place granular fill into the sleeve around the pile in a uniform manner so there are no unfilled voids within the pile sleeve.
K. **Coping.** For panel wall systems, cast the coping in place according to Item 511 and the plans. If using anchors installed in precast panels to support the formwork for the coping, ensure that the anchors are at least 6 inches (150 mm) from the edge of the precast panel. Do not use precast concrete coping. When the panels have an aesthetic surface treatment, use expanding foam to fill the voids between the facing panel and the forms for the coping. Remove any visible foam after the concrete coping has cured.

For modular block wall systems, place precast cap units end-to-end without gaps. Field cut cap units in curved wall sections to fit flush end-to-end. Clean the concrete to remove dirt by using a brush prior to applying adhesive. Attach the cap units to the top of modular blocks using the exterior grade concrete bonding adhesive provided by the MSE Wall System Supplier.

L. **Concrete Sealing.** Seal exterior surfaces of all panels and coping with an epoxy-urethane sealer according to Item 512 after the completion of wall construction. Do not damage the fabric covering the panel joints when preparing the surface before applying the sealer.

M. **Natural Soil Placement.** Once the SGB and the coping are completed, place the natural soil along the slope in 12-inch (300 mm) loose lifts. The Department will use 95 percent of the standard Proctor maximum dry density for compaction acceptance.

N. **Inspection and Compaction Testing.** Perform all of the work described in SS 878 Inspection and Compaction Testing as it pertains to MSE walls. Hire compaction personnel described in Section 878.02 of Supplemental Specification 878 Inspection and Compaction Testing of Unbound Materials. Provide a summary report of all inspections, compaction tests and measurements every 2 weeks to the Engineer. Include all inspections, measurements, compaction test forms, test section data, failing tests and lots and moisture checks. Notify the Engineer when each lift is complete and provide the compaction test data. The Engineer will perform quality assurance (QA) density tests on every fifth lift. Make the required correction when QA tests fail.

840.07 On-Site Assistance. Have a representative from the accredited MSE wall system supplier provide on-site technical assistance for the number of days shown in the contract. This is done to ensure that the Contractor and the Engineer understand the recommended construction procedures for the accredited MSE wall system.

840.08 Method of Measurement. The Department will measure the Mechanically Stabilized Earth Wall by the number of square feet (square meter). The Department will determine the area of the MSE wall from plan dimensions using a length measured along the outside of the uppermost facing panels and a height from the top of the concrete leveling pad to the top of the concrete coping. The Department will not adjust pay quantities for variations in the concrete leveling pad elevations required to accommodate actual panel placement.

The Department will measure Aesthetic Surface Treatment by the number of square feet (square meters). If all facing panels have an aesthetic surface treatment, the measurement for the aesthetic surface treatment will be the same as for the MSE wall. If the aesthetic surface treatment is applied to only a portion of the facing panels, then the Department will determine the area of Aesthetic Surface Treatment by the total area of the facing panels with the aesthetic surface treatment applied.
The Department will measure Natural Soil, Wall Excavation and SGB by the number of cubic yards (cubic meters) according to 203.09. The Department will not measure the porous backfill or geotextile fabric for modular block wall systems. Include this cost in the SGB.

The Department will measure Foundation Preparation by the number of square yards (square meters).

The Department will measure the 6” Drainage Pipe Perforated and Non-Perforated by the number of feet (meters) installed and accepted. The Department will not measure the backfill or fabric for the drainage pipe for payment. Include this cost in the drainage pipe.

The Department will measure Concrete Coping by the number of feet (meters) as measured along the outside of the uppermost facing panels. The Department will not measure the precast cap units for modular block wall systems. Include this cost in the Mechanically Stabilized Earth Wall

840.09 Basis of Payment. The Department will pay for all of the work described in 840.03.G and 840.06.D under Foundation Preparation.

The Department will pay lump sum Select Granular Backfill (SGB) Inspection and Compaction Testing as follows:

- Upon approval of the project personnel 10%
- Uniform Progress Payments 80%
- Wall Completion 10%

The Department will pay for epoxy-urethane sealer, concrete traffic barrier and sealers placed on traffic barriers under separate pay items.

Payment for wall excavation includes dewatering and disposal of materials. If a separate pay item for Cofferdams and Excavation Bracing is not included in the Contract, the Department will pay for cofferdams and excavation bracing under the contract unit price for the MSE wall.

Payment for MSE wall includes facing panels, soil reinforcements, connection devices, bearing pads, joint covering, pile sleeves, leveling pads, and other items which do not have separate pay items but are necessary to complete the MSE wall.

The Department will pay for accepted quantities at the contract prices as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>840</td>
<td>Square Foot (Square Meter)</td>
<td>Mechanically Stabilized Earth Wall</td>
</tr>
<tr>
<td>840</td>
<td>Cubic Yard (Cubic Meter)</td>
<td>Wall Excavation</td>
</tr>
<tr>
<td>840</td>
<td>Square Yard (Square Meter)</td>
<td>Foundation Preparation</td>
</tr>
<tr>
<td>840</td>
<td>Cubic Yard (Cubic Meter)</td>
<td>Select Granular Backfill</td>
</tr>
<tr>
<td>840</td>
<td>Cubic Yard (Cubic Meter)</td>
<td>Natural Soil</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>840</td>
<td>Foot (Meter)</td>
<td>6" Drainage Pipe, Perforated</td>
</tr>
<tr>
<td>840</td>
<td>Foot (Meter)</td>
<td>6" Drainage Pipe, Non-Perforated</td>
</tr>
<tr>
<td>840</td>
<td>Foot (Meter)</td>
<td>Concrete Coping</td>
</tr>
<tr>
<td>840</td>
<td>Square Foot (Square Meter)</td>
<td>Aesthetic Surface Treatment</td>
</tr>
<tr>
<td>840</td>
<td>Days</td>
<td>On-Site Assistance</td>
</tr>
<tr>
<td>840</td>
<td>Lump Sum</td>
<td>SGB Inspection and Compaction Testing</td>
</tr>
</tbody>
</table>
Appendix A

MSE Wall Acceptance Letter

<table>
<thead>
<tr>
<th>Project No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall No.</td>
<td></td>
</tr>
<tr>
<td>Name of Accredited MSE Wall System</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Life</td>
<td>100 years</td>
</tr>
<tr>
<td>Angle of Internal Friction – Reinforced Soil Zone</td>
<td>34 degrees</td>
</tr>
<tr>
<td>Actual Bearing Pressure at base of reinforced soil mass</td>
<td></td>
</tr>
<tr>
<td>Allowable Bearing Pressure at base of reinforced soil mass</td>
<td>(Reproduced from project plans)</td>
</tr>
</tbody>
</table>

I hereby certify that the design calculations for the internal stability of the mechanically stabilized earth retaining structure and the detail drawings included in this construction submission are in complete conformance with the MSE wall Supplemental Specification 840 and either the AASHTO Standard Specifications for Highway Bridges, 17th Edition, 2002 or the AASHTO LRFD Bridge Design Specifications, that were used to develop the project plans. I further certify that the design data provided above and data assumed for the design calculation submitted herein is accurate for the above referenced wall.

<table>
<thead>
<tr>
<th>Engineer’s Seal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature:</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

(Provide an MSE Wall Acceptance Letter for each wall designated in the project plans.)
Designer Note: This Supplemental Specification (SS) is to be included on all projects using MSE Walls. See the Bridge Design Manual for technical design information.

If the predicted differential settlement along the face of the MSE wall will exceed 0.5 percent, then include a plan note that limits the maximum width of the facing panels to 5 feet (1.52 m). If the predicted differential settlement along the face of the MSE wall will exceed 1 percent, then limit the width of the panels and show slip joints on the plans as recommended in the Bridge Design Manual.

Show and describe any aesthetic surface treatments in the plans and include the pay item for Aesthetic Surface Treatment. The use of an aesthetic surface treatment does not require an “As per plan” item.

Include quantities for epoxy-urethane sealer under Item 512.

Include SS 878 in the plans if it is not already required for other compaction testing. If all the inspection and compaction testing will be done on MSE wall select granular backfill, then include an 840 pay item for SGB Inspection and Compaction Testing but do not include a separate 878 pay item. If there will be inspection and compaction testing on material in addition to the MSE wall select granular backfill, then include an 878 pay item and do not include an 840 pay item for SGB Inspection and Compaction Testing.

Item 840 On-Site Assistance is listed as a number of days. For normal projects where there are less than 4 walls then the number of days should be five in the contract. For other projects that have more walls or multiple year contracts then more days should be used. Contact the District Construction Engineers for help.

For all cut sections, include a pay item for cofferdams and excavation bracing. It is highly recommended that this pay item be included for the vast majority of the conditions.

During construction, the Design Soils Consultant will be required to perform a site visit and inspection to ensure the existing foundation is consistent with the designed foundation. This service should be paid for under the continuing consultant services during construction.

The Supplemental Specification includes excavation to 12 inches below the leveling pad. If the foundation of the wall requires more excavation, then increase the amount of wall excavation to remove the unsuitable soil. Show the deeper excavation limits on the plans and include an “As per plan” item for Foundation Preparation.

Design the wall subsurface drainage system as low as possible but still provide drainage to an outlet. Drains should be located near the front of the wall and at the ends of the soil reinforcement. The drain at the front of the wall can be located in front of the facing panels to minimize conflicts with the soil reinforcement. Include a detail showing the porous backfill and fabric in the wall limits. The minimum height of the fabric and porous backfill is 12" (300 mm). Detail the non-perforated pipe and sand outlet outside the wall limits. This should show the sand
from the pipe invert to 12" (300 mm) over the pipe and 6" (150 mm) on each side of the pipe. This sand is a secondary outlet to be used if the outlet is crushed in the future.

Evaluate the drainage outlet conditions to ensure a positive outlet is available. If a positive outlet is not readily available, then consider elevating the entire run of underdrain starting with setting a positive outlet elevation and progressing upstream on a 1 percent slope. Provide a 1 percent minimum grade on all pipes in the MSE wall subsurface drainage system.

The outside limits of the exposed SGB needs to be covered with 2 feet (0.6 m) of natural soil to prevent erosion during and after construction. Show a detail and quantities for this work in the plans.