Revised S1120 - Mixture Design for Chemically Stabilized Soil

• Peter Narsavage, PE
Use 6% in the field.
ODOT Proposal Notes, Supplemental Specifications, and Supplements

2010 Active Proposal Notes, Spec Book, Supplemental Specifications and Supplements

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Title</th>
<th>Effective Date</th>
<th>Name</th>
<th>Designer Note</th>
<th>File Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal Note</td>
<td>1001</td>
<td>Approval and Testing of Air Entraining Agents and Chemical Admixtures for Concrete</td>
<td>1/15/2010</td>
<td>1001_01152010_for_2010</td>
<td>30 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1002</td>
<td>Archiving of Shop Drawings</td>
<td>4/19/2002</td>
<td>1002_10202002_for_2010</td>
<td>93 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1003</td>
<td>High Voltage Direct Current Test Procedure</td>
<td>4/19/2002</td>
<td>1003_04192002_for_2010</td>
<td>66 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1004</td>
<td>Method of Test for Sieve Analysis of Fine and Coarse Aggregates (AASHTO Method T 27 Modified)</td>
<td>4/19/2002</td>
<td>1004_01152010_for_2010</td>
<td>56 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1005</td>
<td>Sieve Analysis for all Materials in 304, 411, 603 Type 1, A 2, and 617</td>
<td>4/19/2002</td>
<td>1005_04122002_for_2010</td>
<td>35 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1006</td>
<td>Plastic Limit Determination of Soil- Aggregate Materials for Use in Items 304, 310, 411, and 617</td>
<td>4/19/2002</td>
<td>1006_04192002_for_2010</td>
<td>24 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1007</td>
<td>Testing of Agricultural Lining Materials</td>
<td>4/19/2002</td>
<td>1007_04192002_for_2010</td>
<td>34 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1008</td>
<td>Method of Test for Glass Beads (740.10 and Special Gradations)</td>
<td>4/19/2002</td>
<td>1008_04192002_for_2010</td>
<td>17 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1009</td>
<td>Method of Test Weight of Coating on Zinc- Coated (Galvanized) or Aluminum-Coated Iron or Steel Articles</td>
<td>4/19/2002</td>
<td>1009_04192002_for_2010</td>
<td>17 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>Micro-Deval Quality Acceptance of Aggregate</td>
<td>4/19/2002</td>
<td>1010_10202002_for_2010</td>
<td>35 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>ODOT Revision to AASHTO/AWS Bridge Welding Code D1.5-95</td>
<td>7/30/2004</td>
<td>1011_07302004_for_2010</td>
<td>34 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1012</td>
<td>Method Of Test For Rubber Compound</td>
<td>4/18/2008</td>
<td>1012_04182008_for_2010</td>
<td>177 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td>Methods Of Testing Asphalt Emulsions</td>
<td>4/18/2008</td>
<td>1013_04182008_for_2010</td>
<td>22 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1014</td>
<td>Methods Of Testing Cut-Back Asphalt Emulsions</td>
<td>4/18/2008</td>
<td>1014_04182008_for_2010</td>
<td>24 KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1015</td>
<td>Composition of Unbound Materials</td>
<td>4/21/2006</td>
<td>1015_04212006_for_2010</td>
<td>52 KB</td>
<td></td>
</tr>
</tbody>
</table>
2010 All Proposal Notes, Spec Book, Supplemental Specifications and Supplements

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Title</th>
<th>Effective Date</th>
<th>Name</th>
<th>Designer Note</th>
<th>File Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Type</td>
<td></td>
<td>Proposal Note (51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document Type</td>
<td></td>
<td>Spec Book (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document Type</td>
<td></td>
<td>Supplement (103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ODOT Proposal Notes, Supplemental Specifications, and Supplements

2010 Active Proposal Notes, Spec Book, Supplemental Specifications and Supplements

Type	Number	Title	Effective Date	Name	Designer Note	File Size
------	--------					
![icon]	1120	Mixture Design for Chemically Stabilized Soils	7/20/2007	1120_07202007_for_2010		57 KB
![icon]	1125	Testing and Acceptance of Mastic Supports for Reinforcing Steel	10/19/2007	1125_10192007_for_2010		55 KB

2010 All Proposal Notes, Spec Book, Supplemental Specifications and Supplements

- **Document Type**: Proposal Note (51)
- **Document Type**: Spec Book (1)
- **Document Type**: Supplement (103)
- **Document Type**: Supplemental Spec (39)

2008 Active Proposal Notes, Spec Book, Supplemental Specifications and Supplements

- **Document Type**: Proposal Note (56)
- **Document Type**: Spec Book (1)
- **Document Type**: Supplement (113)
Finding S 1120 on the web

- www.dot.state.oh.us
- Divisions > Construction Management > Online Documents > Proposal Notes, Supplemental Specifications, and Supplements
- Document Type: Supplement
- Scroll down to “more…”
Questions

Peter Narsavage, P.E.
State Construction Geotechnical Engineer,
Office of Construction Administration
Ohio Dept. of Transportation
e-mail: Peter.Narsavage@dot.state.oh.us
ph:(614) 644–6638
cell:(614) 562–1529
Reasons for Review/Revision

- Consistency between design (GB1) and construction (MOP204)
- Incorporate base reinforcement (i.e., geogrid) option
- Verify chemical stabilization strength and depth requirements through engineering analysis
- Analyze Rubblize and Roll requirement N_{60} > 15bpf
Consistency Between Design (GB1) and Construction (MOP204)
Consistency Between Design (GB1) and Construction (MOP204)

Figure 204.1 - Example using the Subgrade Treatment Chart
GB1 Table B – Subgrade Stabilization

<table>
<thead>
<tr>
<th>Average N<sub>L</sub></th>
<th>Undercutting (feet)</th>
<th>Chemical Stabilization (inches)</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth N<sup>(1)</sup></td>
<td>Depth MN<sup>(2)</sup></td>
<td>Granular Material Replacement<sup>(4)</sup></td>
</tr>
<tr>
<td>0 to 5</td>
<td>6</td>
<td>6</td>
<td>Type B, C, or D</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>Type B, C, or D</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>Type B, C, or D</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>Type B or C</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>Type B or C</td>
</tr>
<tr>
<td>10 to 15</td>
<td>0</td>
<td>1</td>
<td>Type B or C</td>
</tr>
<tr>
<td>> 15</td>
<td>0</td>
<td>1<sup>(3)</sup></td>
<td>Type B or C</td>
</tr>
</tbody>
</table>

Notes:

1. N = low N₆₀ and acceptable MC according to GB1 Section C
2. MN = low N₆₀ and excess MC according to GB1 Section C
3. Only if the MC exceeds optimum by more than 5 percent
4. Determine appropriate granular material type for specified undercut depth
5. Always use Item 204 Geotextile Fabric when undercutting
6. Determine type of chemical stabilization according to GB1 Section G
7. Undercut up to 5 feet to remove all problematic soil, if not, undercut 3 feet
Consistency Between Design (GB1) and Construction (MOP204)

- **Undercut Design Methodology**
 - Experience (current GB1, MOP204)
 - Modified Steward (USACE, USFS)
 - Giroud–Han
Consistency Between Design (GB1) and Construction (MOP204)

• Inputs
 - Subgrade strength
 - Vehicle passes
 - Equivalent axle loads (wheel loads)
 - Axle configurations
 - Tire pressure
 - Rut depth
 - Aperture stability modulus

• Unpaved Analysis
Consistency Between Design (GB1) and Construction (MOP204)

- Subgrade Strength
 - Blow counts
 - Unconfined compressive strength
 - Rut depth
 - CBR
Consistency Between Design (GB1) and Construction (MOP204)

<table>
<thead>
<tr>
<th>N_{60}</th>
<th>q_u (tsf)</th>
<th>q_u (psi)</th>
<th>CBR ($q_u/2/4.3$)</th>
<th>Rut Depth (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.25</td>
<td>3.47</td>
<td>0.4</td>
<td>12+</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>6.94</td>
<td>0.8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>10.42</td>
<td>1.2</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>13.89</td>
<td>1.6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1.25</td>
<td>17.36</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>20.83</td>
<td>2.4</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1.75</td>
<td>24.31</td>
<td>2.8</td>
<td>1</td>
</tr>
</tbody>
</table>
Consistency Between Design (GB1) and Construction (MOP204)

- Rut depth = 1"
- 1000 passes
- 80 psi tire pressure
- 9000 lb wheel load

Graph showing the relationship between CBR and undercut for various materials and conditions.
Consistency Between Design (GB1) and Construction (MOP204)

Draft

- Unreinforced
- Geogrid
Consistency Between Design (GB1) and Construction (MOP204)

Draft

- Unreinforced
- Geogrid

Undercut (in) vs. N_{60L}

GB1/MOP 204 Review/Revision
Consistency Between Design (GB1) and Construction (MOP204)

Draft

- Unreinforced
- Geogrid

Rut Depth (in)

Undercut (in)
Consistency Between Design (GB1) and Construction (MOP204)

Design Charts/Graphs are not Finalized!
Incorporate Base Reinforcement Option

 - Average $N_L < 5$ bpf
 - Avoid impact on utilities below subgrade
 - Avoid difficult maintenance of traffic situations
 - Granular thickness $> 14''$, fabric on bottom, grid in middle
Incorporate Base Reinforcement Option

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Required Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength at 2% Strain</td>
<td>ASTM D 6637</td>
<td>400 lb/ft</td>
<td>5.8 kN/m</td>
</tr>
<tr>
<td>Minimum Opening Size</td>
<td>Direct Measure</td>
<td>0.75 in [2]</td>
<td>19 mm</td>
</tr>
<tr>
<td>Maximum Opening Size</td>
<td>Direct Measure</td>
<td>3.0 in [3]</td>
<td>76 mm</td>
</tr>
<tr>
<td>Survivability Index Values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>ASTM D 6637</td>
<td>1230 lb/ft</td>
<td>18 kN/m</td>
</tr>
<tr>
<td>Ultraviolet Stability</td>
<td>ASTM D 4355</td>
<td>70 % at 500 hrs</td>
<td></td>
</tr>
</tbody>
</table>

[^1] Values, except ultraviolet stability, are minimum average roll values, MARV (average value minus two standard deviations.) Strength values are the minimum value in either the machine or cross-machine direction.

[^2] Minimum opening size must be ≥ D_{50} of aggregate above geogrid to provide interlock.

[^3] Maximum opening size must be ≤ $2 \times D_{85}$ to prevent aggregate from penetrating into the subgrade.

[^4] GRI – Geosynthetic Research Institute
Incorporate Base Reinforcement Option

<table>
<thead>
<tr>
<th>Table 5-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geogrid Survivability Property Requirementsootnote{1,2,3} For Stabilization and Base Reinforcement Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Units</th>
<th>Requirement</th>
<th>Geogrid Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVIVABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultimate Multi-Rib Tensile Strength</td>
<td>ASTM D 6637</td>
<td>lb/ft (kN/m)</td>
<td>1230 (18)</td>
<td>CLASS 1ootnote{4}</td>
</tr>
<tr>
<td>Junction Strengthootnote{5}</td>
<td>GSI GRI GG2</td>
<td>lb (N)</td>
<td>25ootnote{5} (110ootnote{5})</td>
<td>25 (110)</td>
</tr>
<tr>
<td>Ultraviolet Stability (Retained Strength)</td>
<td>ASTM D 4355</td>
<td>%</td>
<td>50% after 500 hours of exposure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPENING CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Size</td>
</tr>
<tr>
<td>Separation</td>
</tr>
</tbody>
</table>
Chemical Stabilization Strength and Depth Requirements

• Analyze using AASHTO2002 4.4.7.1.1.7, Bearing Capacity of Layered Soils
 – Undrained Loading ($\phi = 0$) of a 2-layered cohesive soil system
 – Stiff soil over soft soil; assume punching shear
 – Assume $FS=3$
Chemical Stabilization Strength and Depth Requirements

Chemical Stabilization Thickness (100 psi) vs q_u

Chemical Thickness (in)

q_u (tsf)
Chemical Stabilization Strength and Depth Requirements

Chemical Stabilization Thickness (100 psi) vs N$_{60}$

- **Analysis**
- **GB1**
- **MOP204**

Chemical Thickness (in)

N$_{60}$
Chemical Stabilization Strength and Depth Requirements

• Conclusions
 – 100 psi strength for stabilized layer appears adequate
 – May consider chemical stabilization for $N_{60} < 5\text{bpf}$
 – Current depth requirements are adequate
Putting it All Together in the MOP204

DRAFT

Undercut Depth, feet

with geogrid & geotextile

with geotextile

Depth of chemical stabilization

HP (tsf) 0 0.25 0.5 1.0 1.5 2.0 2.5 3.0

Rut Depth from Proof Roller 0 2 4 6 8 10 12 14 16

N (blows/ft) 0 2 4 6 8 10 12 14 16

16" 14" 12"

GB1/MOP 204 Review/Revision
Analyze Rubblize and Roll requirement $N_{60} > 15 \text{bpf}$

- Much Rubblize and Roll on BUT/WAR–75–3.76/1.90
 - Design CBR = 6
 - Average $N_L = 16$
 - 19% of borings exhibited $N_L < 10$
 - All planned rubblize and roll was successful
Analyze Rubblize and Roll requirement $N_{60} > 15 \text{ bpf}$

- Rubblize and Roll on WAR–75–3.40
 - $6 < N_L < 10$ for 36 of 117 borings
 - $11 < N_L < 15$ for 35 of 117 borings
- Plan to observe 3,700 feet of R/R where average N_L ranges from 10 to 13 bpf (in May 2010)
Questions?