Parametric Evaluation of Admixture Effects on Soil

Mark J. Carlson, MSCE, MSMngE, P.E. Chief Engineer

Soil Stabilization

Benefits:

- Very substantial increases in resilient modulus values (by a factor of 10 or more in some cases)
- Very substantial improvements in shear strength (by a factor of 20 or more in some cases)
- Continued strength gain with time, even after periods of environmental or load damage (autogenous healing)
- Long-term durability over decades of service even under severe environmental conditions

Soil Modification

Benefits:

- Plasticity reduction (depending on mineralogy)
- Reduction in moisture-holding capacity (drying)
- Swell reduction
- Improved stability
- The ability to construct a solid working platform

Sampling

Samples are taken from the actual jobsite in order to evaluate the depth profile, particle size distribution, optimum moisture determination, and

strength properties.

Photo Credit: www.carmeusena.com

Strength and Durability Testing

Specimens are made with admixtures to confirm the strength and durability of the cementitious reactions.

Photo Credit: www.carmeusena.com

Photo Credit: www.carmeusena.com

Analysis of Data

The Optimum Moisture Content (Proctor analysis) determines the moisture content needed for maximum density.

Pozzolanic Reaction

*Ca⁺⁺ + OH - + Soluble Clay Silica → Calcium Silicate Hydrate (CSH)

**Ca++ + OH - + Soluble Clay Alumina → Calcium Aluminate Hydrate (CAH)

Baseline Soil Classification Test Results

Table 1: Baseline Soil Classification Test Results							
Soil Type	Atterberg Limits			Percent Passing	Maximum	Standard Proctor	
	LL	PL	PI	No. 200 Sieve	Standard Proctor Dry Unit Weight	Optimum Moisture Content	
Silt/Clay (CL)	36	20	16	79.2%	114.2 pcf	14.4%	
Clay/Sand (SC)	33	23	10	30.6%	113.3 pcf	14.1%	
Silt (ML)	34	23	11	80.9%	113.3 pcf	10.7%	

 Used three types of soil for parametric evaluation from numerous project site.

Standard Proctor Test Results for CL Soil

Table 2: Standard Proctor Test Results for CL Soil Admixture (% by Dry Unit Weight)						
Admixture	0% Admixture Content	2% Admixture Content	4% Admixture Content	6% Admixture Content	8% Admixture Content	
Portland Cement	N/A	N/A	111.3 pcf @ 11.5%	112.9 pcf @ 12.1%	114.0 pcf @ 11.7%	
High Cal	N/A	N/A	116.1 pcf @ 12.6%	113.4 pcf @ 10.2%	117.4 pcf @ 10.2%	
Dolo	N/A	N/A	114.4 pcf @ 12.3%	115.5 pcf @ 12.5%	114.4 pcf @ 12.3%	
No Admixture	114.2 pcf @ 14.4%	N/A	N/A	N/A	N/A	

Table 3: Unconfined Compression Test Results for CL Soils in (psi) – No Admixture (% by Dry Unit Weight)

Table 4: Unconfined Compression Test Results for CL Soils in (psi) – Dolo Admixture (% by Dry Unit Weight)

Table 5: Unconfined Compression Test Results for CL Soils in (psi) – Hi Cal Admixture (% by Dry Unit Weight)

Table 6: Unconfined Compression Test Results for CL Soils in (psi) — Portland Cement Admixture (% by Dry Unit Weight)

Standard Proctor Test Results for SC Soil

Table 8: Standard Proctor Test Results for SC Soil Admixture (% by Dry Unit Weight)						
Admixture	0% Admixture Content	2% Admixture Content	4% Admixture Content	6% Admixture Content	8% Admixture Content	
Portland Cement	N/A	N/A	N/A	N/A	N/A	
High Cal	N/A	N/A	114.4 pcf @ 14.8%	113.4 pcf @ 14.3%	113.2 pcf @ 13.5%	
Dolo	N/A	N/A	113.3 pcf @ 13.7%	111.7 pcf @ 14.1%	113.3 pcf @ 14.1%	
No Admixture	112.9 pcf @ 12.3%	N/A	N/A	N/A	N/A	

Table 9: Unconfined Compression Test Results for SC Soils in (psi) – Dolo Admixture (% by Dry Unit Weight)

Table 10: Unconfined Compression Test Results for SC Soils in (psi) — Hi-Cal Admixture (% by Dry Unit Weight)

Standard Proctor Test Results for ML Soil

Table 12: Standard Proctor Test Results for ML Soil Admixture (% by Dry Unit Weight)						
Admixture	0% Admixture Content	2% Admixture Content	4% Admixture Content	6% Admixture Content	8% Admixture Content	
Portland Cement	N/A	N/A	N/A	N/A	N/A	
High Cal	N/A	N/A	113.3 pcf @ 10.7%	113.7 pcf @ 11.6%	112.7 pcf @ 11.1%	
Dolo	N/A	N/A	113.7 pcf @ 12.7%	113.8 pcf @ 12.7%	116.4 pcf @ 8.4%	
No Admixture	113.3 pcf @ 15.4%	N/A	N/A	N/A	N/A	

Table 13: Unconfined Compression Test Results for ML Soils in (psi) — Dolo Admixture (% by Dry Unit Weight)

Table 14: Unconfined Compression Test Results for ML Soils in (psi) – Hi-Cal Admixture (% by Dry Unit Weight)

Load Bearing Capacity is Greatly Increased

California Bearing Ratio (CBR) improves after the 4 day soaking even without curing time. At the Xenia site, the CBR increased 400% with 7 days curing time, followed by the 4 day soak.

High Resistance to Moisture Damage

Unconfined compressive strengths using admixtures gain enough strength to resist moisture damage. Subjecting the cylinders to 1 day of capillary soaking did not impair their

strength.

Long-Term Strength Gain

Unconfined compressive strengths using 6% lime/kiln dust show a significant 300% gain from 7 to 28 to 56 days, cured at ambient room temperature.

Lime Stabilization Lowers Pavement Cost

Lime Stabilization Yields Over 20% Initial Cost Savings

Estimated Cost = \$22.1 Million

Lime Stabilized Subgrade CBR = 15

Questions/Comments

