NOTES:
1. 6" DIA. PERFORATED PIPE IDMS 707.31 UNDERDRAIN, IDMS 605.03 PLACED ALONG THE ENTIRE LENGTH OF SLEEPER SLAB. SEE NOTES 1 THROUGH 5.
2. FOR ADDITIONAL NOTES AND DETAILS AT PIPE OUTLET ENDS, SEE STD. CONSTR. DWG. DM-4.1.
3. **TOP OF SLEEPER SLAB**
4. **AGGREGATE BASE**
5. **PLATE DRAINS AND OUTLETS ON THE LOW SIDE OF SUPERELEVATED ROADWAY.**
6. **REBARS SS502 SHALL BE PLACED PARALLEL TO CENTERLINE OF ROADWAY.**
7. **THE SPACING SHALL BE MEASURED PERPENDICULAR TO CENTERLINE OF ROADWAY.**
8. **THE REBAR LAYOUT FOR SLEEPER SLAB WILL BE SIMILAR TO SLEEPER SLAB REBAR LAYOUT SHOWN IN DETAIL A, SHEET 714.**
9. **REBARS SS502 Shall BE PLACED PARALLEL TO CENTERLINE OF ROADWAY. THE SPACING Shall BE MEASURED PERPENDICULAR TO CENTERLINE OF ROADWAY. THE REBAR LAYOUT FOR SLEEPER SLAB WILL BE SIMILAR TO SLEEPER SLAB REBAR LAYOUT SHOWN IN DETAIL A, SHEET 714.**
10. **PLACE DRAINS AND OUTLETS ON THE LOW SIDE OF SUPERELEVATED APPROACH SLABS AND BOTH SIDES IF THE ApproACH SlABS IS JOINTLESS.**
11. **STONE MATERIAL FOR EROSION CONTROL.**

GENERAL NOTES

STATE OF OHIO
DEPARTMENT OF TRANSPORTATION
DESIGN AGENCY
ADMINISTRATOR
DATE

REINFORCING STEEL FOR SLEEPER SLAB

INDEX OF DRAWINGS

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OF 14</td>
<td>TYPE A INSTALLATION</td>
</tr>
<tr>
<td>2 OF 14</td>
<td>TYPE A INSTALLATION (ADDITIONAL DETAILS, NOTES, AND SECTIONS)</td>
</tr>
<tr>
<td>3 OF 14</td>
<td>TYPE A INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>4 OF 14</td>
<td>TYPE B INSTALLATION</td>
</tr>
<tr>
<td>5 OF 14</td>
<td>TYPE B INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>6 OF 14</td>
<td>TYPE B INSTALLATION (ADDITIONAL DETAILS, NOTES, AND SECTIONS)</td>
</tr>
<tr>
<td>7 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>8 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>9 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>10 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>11 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>12 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>13 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>14 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>01-16-15</td>
<td>TYPE A INSTALLATION (WITH RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>01-19-18</td>
<td>TYPE B INSTALLATION</td>
</tr>
<tr>
<td>07-17-15</td>
<td>TYPE C INSTALLATION</td>
</tr>
</tbody>
</table>

REINFORCING STEEL FOR SLEEPER SLAB

INDEX OF DRAWINGS

<table>
<thead>
<tr>
<th>SHEET NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OF 14</td>
<td>TYPE A INSTALLATION</td>
</tr>
<tr>
<td>2 OF 14</td>
<td>TYPE A INSTALLATION (ADDITIONAL DETAILS, NOTES, AND SECTIONS)</td>
</tr>
<tr>
<td>3 OF 14</td>
<td>TYPE A INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>4 OF 14</td>
<td>TYPE B INSTALLATION</td>
</tr>
<tr>
<td>5 OF 14</td>
<td>TYPE B INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>6 OF 14</td>
<td>TYPE B INSTALLATION (ADDITIONAL DETAILS, NOTES, AND SECTIONS)</td>
</tr>
<tr>
<td>7 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>8 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>9 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>10 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>11 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>12 OF 14</td>
<td>TYPE C INSTALLATION</td>
</tr>
<tr>
<td>13 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>14 OF 14</td>
<td>TYPE C INSTALLATION (WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT)</td>
</tr>
<tr>
<td>01-16-15</td>
<td>TYPE A INSTALLATION (WITH RIGID (CONCRETE) PAVEMENT)</td>
</tr>
<tr>
<td>01-19-18</td>
<td>TYPE B INSTALLATION</td>
</tr>
<tr>
<td>07-17-15</td>
<td>TYPE C INSTALLATION</td>
</tr>
</tbody>
</table>
NOTES:
1. 1" PREFORMED EXPANSION JOINT FILLER SHALL EXTEND UP BETWEEN CAST-IN-PLACE CONCRETE TURNBACK WINGWALLS AND THE SIDE FACES OF APPROACH SLAB AND PROPOSED FLEXIBLE ASPHALT PAVEMENT TO THE ELEVATION OF 1" BELOW THE FINAL SURFACE ELEVATION OF THE FLEXIBLE ASPHALT PAVEMENT. THEN, APPLY 1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER AS PER CMS 705.04.
2. SEE STD. BRIDGE DWG. AS-1-15, SHEET 22, DETAIL C.
3. FOR DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

PROPOSED FLEXIBLE (ASPHALT) PAVEMENT

BURIED REINFORCED CONCRETE APPROACH SLAB

Porous Backfill with Filter Fabric

REINFORCED CONCRETE APPROACH SLAB

ASPHALT CONCRETE INTERMEDIATE COURSE (SEE ROADWAY PLANS)

TACK COAT FOR INTERMEDIATE COURSE (SEE ROADWAY PLANS)

ASPHALT CONCRETE SURFACE COURSE (SEE ROADWAY PLANS)

LEGEND:

P.E.J.F. = PREFORMED EXPANSION JOINT FILLER

1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER, CMS 705.04 (TYP.) (SEE NOTE 0)

5'-0" REINFORCED JOINT WASH, CENTERED ON JOINT, WITH TACK SEALER, CMS 705.04 (TYP.) FOR ADDITIONAL NOTES.

SECTION A-A

JOINTED STRUCTURE WITH PROPOSED FLEXIBLE (ASPHALT) PAVEMENT

REINFORCING STEEL NOT SHOWN

SEALER, CMS 705.04 (TYP.) (SEE NOTE 1)

1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER AS PER CMS 705.04.

1'-6" THICKNESS OF PROPOSED ASPHALT CONCRETE BASE.

1'-6" THICKNESS OF PROPOSED AGGREGATE BASE (FLEXIBLE) PAVEMENT.

1" PREFORMED EXPANSION JOINT FILLER SHALL EXTEND UP BETWEEN CAST-IN-PLACE CONCRETE TURNBACK WINGWALLS AND THE SIDE FACES OF APPROACH SLAB AND PROPOSED FLEXIBLE ASPHALT PAVEMENT TO THE ELEVATION OF 1" BELOW THE FINAL SURFACE ELEVATION OF THE FLEXIBLE ASPHALT PAVEMENT. THEN, APPLY 1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER AS PER CMS 705.04.

SEE DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

FOR DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

SEE BRIDGE DWG. AS-1-15, SHEET 22, DETAIL C.

SEE CONCRETE TURNBACK WINGWALL (TYP.):

1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER AS PER CMS 705.04.

FINAL SURFACE ELEVATION OF THE FLEXIBLE (ASPHALT) PAVEMENT. THEN, APPLY 1" PREFORMED EXPANSION JOINT FILLER SHALL EXTEND UP BETWEEN CAST-IN-PLACE CONCRETE TURNBACK WINGWALLS AND THE SIDE FACES OF APPROACH SLAB AND PROPOSED FLEXIBLE ASPHALT PAVEMENT TO THE ELEVATION OF 1" BELOW THE FINAL SURFACE ELEVATION OF THE FLEXIBLE ASPHALT PAVEMENT. THEN, APPLY 1" DEEP x 1" WIDE HOT APPLIED JOINT SEALER AS PER CMS 705.04.

SEE DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

FOR DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

SEE BRIDGE DWG. AS-1-15, SHEET 22, DETAIL C.
NOTES:

1. 1" PREFORMED EXPANSION JOINT FILLER SHALL EXTEND UP BETWEEN CAST-ON-PLACE CONCRETE TURNBACK WINGWALLS AND THE SIDE FACES OF APPROACH SLAB AND PROPOSED FLEXIBLE (ASPHALT) PAVEMENT TO THE ELEVATION OF 1" BELOW THE FINAL SURFACE ELEVATION OF THE FLEXIBLE (ASPHALT) PAVEMENT. THEN, APPLY 1" DEEP x 1" WIDE NOT APPLIED JOINT SEALER AS PER CMS 705.04.
2. SEE STD. CONSTRUCTION DWG. AS-1-15, DETAIL C.
3. FOR DETAIL A AND ADDITIONAL NOTES, SEE SHEET 514.

FLEXIBLE (ASPHALT) PAVEMENT
PROPOSED RIGID (CONCRETE) PAVEMENT

SECTION A-A
JOINTED STRUCTURE WITH PROPOSED RIGID (CONCRETE) PAVEMENT
REINFORCING STEEL NOT SHOWN

TOP OF BURIED APPROACH SLAB
1" DEEP x 1" WIDE NOT APPLIED JOINT SEALER, CMS 705.04 (TYP.) - SEE NOTE B

CAST-ON-PLACE CONCRETE TURNBACK MINI-WALL (TYP.)

LEGEND:
P.E.J.F. = PREFORMED EXPANSION JOINT FILLER

TAKEN PERPENDICULAR TO E ROADWAY, LOOKING UP-STATION

ELEVATION
NOTES:

1. *PREFORMED EXPANSION JOINT FILLER SHALL EXTEND UP BETWEEN CAST-IN-PLACE CONCRETE TURNBACK WINGWALLS AND THE SIDE FACES OF APPROACH SLAB AND PROPOSED FLEXIBLE (ASPHALT) PAVEMENT TO THE ELEVATION OF "2" BELOW THE FINAL SURFACE ELEVATION OF THE FLEXIBLE (ASPHALT) PAVEMENT. THEN, APPLY 1" DEEP X 1" WIDE HOT APPLIED JOINT SEALER AS PER DWG. 105-04.

2. FOR MIDWEST GUARDRAIL SYSTEM BRIDGE TERMINAL ASSEMBLY, TYPE 1, SEE STD. CONST. DWG. MGS-3.1. FOR MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2, SEE STD. CONST. DWG. MGS-3.2.

3. FOR TYPE 4-B CONCRETE CURB, SEE STD. CONST. DWG. B4-5.1.

5. PROVIDE *PREFORMED EXPANSION JOINT FILLER AT THE INTERFACE BETWEEN END OF CONCRETE BRIDGE RAILING AND TYPE 4-B CONCRETE CURB.

6. FOR GENERAL NOTES, SEE SHEET 14-14.
NOTE:
1. For location of sections B-B, C-C, and D-D, see Sheet 11.
2. For Armored Preformed Joint Seal opening Table, see Sheet 11.
3. Apply bond breaker to entire top surface of the Concrete sleeper slab, see Reinforced Concrete sleeper slab surface finish and Bond breaker* note on Sheet 11.
4. If the skew angle is 0°, \(A_{\alpha} \) and \(A_{\delta} \) equal to zero.

ITEM 516 - ARMORED PREFORMED JOINT SEAL:

Implement the Armored Preformed Joint Seal in accordance with the manufacturer's specifications and under the supervision of the manufacturer's designated representative.

- Select the Armored Preformed Joint Seal from one of the manufacturers listed below:
 - R.J. Waton, Inc.
 - 1035 Walden Avenue
 - Allen, NY 14604-3420
 - Phone: (716) 905-7030
 - Fax: (716) 905-7035
 - SILICOFLEX SH-400 MAX. MOVEMENT RATING 49
 - Watson Bowman Acme Corp.
 - 95 Pineview Drive
 - Amherst, NY 14228-2191
 - Phone: (716) 901-7024
 - Fax: (716) 901-7016
 - WABO SPS-400 (MAX. MOVEMENT RATING: 4")
 - Fax: (716) 901-7016
 - PHONE: (716) 901-7020
 - Fax: (716) 901-7015
 - SS502 MAX. MOVEMENT RATING 45
 - U.S. Brown Company
 - 350 East Cherry Street
 - North Baltimore, OH 45872-1437
 - Phone: (419) 257-2200
 - Fax: (419) 257-2200
 - WATSON BOWMAN ACME CORP.
 - PHONE: (716) 901-7020
 - Fax: (716) 901-7016
 - REINFORCING STEEL AND MSE WALL NOT SHOWN

The seal and adhesive are an integral joint system that shall be designed and supplied by the same manufacturer.

ITEM 516 - ARMORED PREFORMED JOINT SEAL INSTALLATION:

Set the top of the joint seal at least 4" below the roadway surface. At the concrete bridge railing, the joint seal shall be positioned to the face of the concrete bridge railing and follow the slope of the concrete bridge railing for a minimum of 6" on the top of the concrete bridge railing as shown in the layout of the ONE-C on Sheet 6. At the concrete curb (see Sheet 6), there is no minimum recessed dimension. However, the joint seal shall not protrude from the face of the concrete curb and shall be turned up to within 1" from the edge of the concrete curb.

NOTES:
- Joint seal shall still be at least 6" below the roadway surface. Therefore, at the joint seal's minimum width, the top of the joint seal shall be at least 6" below the roadway surface.
- Continually check and adjust the depth of the joint seal by hand as necessary because when the joint seal opening closes, the joint seal will have the tendency to rise. Therefore, at the joint seal's minimum width, the top of the joint seal will still be at least 6" below the roadway surface.
- Submit the joint seal installation procedures to the engineer at least seven (7) days before construction begins. The department's acceptance is not required.
- The department will measure the Armored Preformed Joint Seal by the number of feet horizontally along the joint centerline.
- The department will include all materials, labor, equipment, surface preparations, tools, traffic control, and incursments needed to complete the work described above in the contract price for Item 516 - Armored Preformed Joint Seal.
A jointless superstructure with cast-in-place concrete turnback wingwalls and proposed flexible (asphalt) pavement.

Plan
- Bridge limit
- Approach slab
- Proposed flexible (asphalt) pavement

Elevation
- Cast-in-place concrete turnback wingwall (typ.)
- Proposed flexible (asphalt) pavement

Section A-A
- Reinforcing steel not shown

Notes
1. For detail 4 and additional notes, see sheet 715.
2. For armorless preformed joint seal opening table, see sheet 815.
3. For approach slab reinforcing steel and additional details, see std. bridge dwg. AS-1-15.
4. If the skew angle is 0°, the length of SS501 rebars shall be the approach slab width (foc-to-toe) plus 6". See detail A and note 3 on sheet 1015.
5. Apply bond breaker to the entire top surface of the concrete sleeper slab. See "reinforced concrete sleeper slab surface finish and bond breaker" note on sheet 1015.
6. For general notes, see sheet 1115.
7. See section F-F on sheet 1115.

Reinforcing Steel for Sleeper Slab
- Table showing rebars, length, type, and bending diagram.
STATE OF OHIO DEPARTMENT OF TRANSPORTATION

DATE

ADMINISTRATOR

DESIGN AGENCY

REVISIONS

OFFICE OF STRUCTURAL ENGINEERING

STANDARD BRIDGE DRAWING

DETAIL A

OUT-TO-OUT WIDTH

APPROACH SLAB

BRIDGE RAILING

CONCRETE SINGLE SLOPE

SYSTEM (TYP.)

MIDWEST GUARDRAIL

EDGE OF APPROACH SLAB

T3

CONSTRUCTION JOINT

3" CLR. (TYP.)

JOINT FILLER

PREFORMED EXPANSION JOINT

LEGEND:

- P.E.J.F. = PREFORMED EXPANSION JOINT FILLER

1. Additional length due to geometry, if the skew angle is greater than 0°, see note 3 on this sheet.
2. Field bent rebars as necessary.
3. Spacings shall be measured perpendicular to centerline of roadway.
4. Rebars SS502 and SS503 shall be placed parallel to centerline of roadway.
5. For armoring preformed joint seal opening table, see sheet 11.
6. For armoring preformed joint seal note, see sheet 11.
8. For type 4-a concrete curb and type 4-c concrete curb, see std. const. (O.M., p.6-1).

NOTES:

1. For location of detail A and reinforcing steel list, see sheet 11.
2. For sections C-C, D-D, and additional notes, see sheet 11.
3. If the skew angle is 0°, L = A and L = A.
4. Rebars SS500 and SS503 shall be placed parallel to centerline of roadway. The spacings shall be measured perpendicular to centerline of roadway.
5. For armoring preformed joint seal opening table, see sheet 11.
6. Form joint opening using removable form.
7. For armoring preformed joint seal note, see sheet 11.
9. For type 4-a concrete curb and type 4-c concrete curb, see std. const. (O.M., p.6-1).

SECTION A-A

SECTION B-B
NOTES:
1. FOR LOCATION OF SECTIONS C-C, D-D, AND E-E, SEE SHEET 1014.
2. FOR MIDWEST GUARDRAIL SYSTEM BRIDGE TERMINAL ASSEMBLY, TYPE 1, SEE STD. CONST. DWG. MGS-3.1. MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2 (STD. CONST. DWG. MGS-3.2) SIMILAR.
3. FOR TYPE 4-A CONCRETE CURB AND TYPE 4-C CONCRETE CURB, SEE STD. CONST. DWG. MGS-3.1. MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2 (STD. CONST. DWG. MGS-3.2) SIMILAR.
4. FOR APPROACH SLAB REINFORCING STEEL AND ADDITIONAL DETAILS, SEE STD. BRIDGE DWG. BP-5.1.
5. FOR ARMORLESS PREFORMED JOINT SEAL NOTE, SEE SHEET 814.
6. FOR ARMORLESS PREFORMED JOINT SEAL OPENING TABLE SEE SHEET 714.
7. FOR MIDWEST GUARDRAIL SYSTEM BRIDGE TERMINAL ASSEMBLY, TYPE 1, SEE STD. CONST. DWG. MGS-3.1. MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2 (STD. CONST. DWG. MGS-3.2) SIMILAR.
8. PLACE DRAINS AND OUTLETS ON THE LOW SIDE OF SUPERELEVATED APPROACH SLABS AND BOTH SIDES IF THE APPROACH SLABS IS CROWNED.

FOR GENERAL NOTES, SEE SHEET 1014.
#1: SKEW ANGLE
#2: APPROACH SLAB WIDTH (TOE-TO-TOE CONCRETE BRIDGE RAILING)

PLAN
J OINTLESS SUPERSTRUCTURE WITH MSE WALLS AND PROPOSED RIGID (CONCRETE) PAVEMENT

SEE NOTE 1

SECTION A-A
REINFORCING STEEL NOT SHOWN

NOTES:
1. FOR ADDITIONAL DETAILS, NOTES, REINFORCING STEEL LIST, ARMORLESS PREFORMED JOINT SEAL OPENING TABLE SEE SHEETS 6-14 THROUGH 8-14.
2. FOR TYPE B PRESSURE RELIEF JOINT, SEE STD. CONST. DWG. BP-2.4.
4. FOR GENERAL NOTES, SEE SHEET AS-1-15.
NOTES:
1. FOR ADDITIONAL DETAILS, NOTES, REINFORCING STEEL LIST, ARMORLESS PREFORMED JOINT SEAL OPENING TABLE, SEE SHEETS 11 TO 14 THROUGH 17.
2. FOR TYPE B PRESSURE RELIEF JOINT, SEE STD. CONST. DWG. BP-2.4.
4. FOR GENERAL NOTES, SEE SHEET 14-15.
GENERAL NOTES

GENERAL:
This standard drawing provides design and general construction details. The project plans shall show skew angles, special notes and details where necessary, and a pay item for type A, type B, or type C installation in the estimated quantities table. For conditions other than those indicated herein, the approach slab installation shall be adapted to fit the ends of the reinforced concrete approach slab.

For bridges and approach slabs with sidewalks, the details will be similar to the details shown here. The width of the approach slab shall be the full width of the bridge, and the sidewalk will be on top of the approach slab.

DESCRIPTION:
Perform work in accordance with CMS 526 except as noted herein.

DESIGN CRITERIA:

DESIGN DATA:
Design Loading: H-L-85
F.W.S. = 0.060 KSF
Design stresses:
Concrete = compressive strength = 4.5 KSI
Reinforcing steel = Min. yield strength = 60 KSI

REINFORCED CONCRETE SLEEPER SLAB LENGTH:
For type A installation and type C installation, the length of the sleeper slab shall be for the entire width of the approach slab as shown on sheets 114 through 13 and sheets 1, 14 and 2, respectively, for a skewed structure, the sleeper slab shall be placed parallel to the skew at the end of approach slab.

LONGITUDINAL CONSTRUCTION JOINTS:
For stage construction, longitudinal joint shall be in accordance with CMS 511. Provide 2'-6" lap splice of SS501 rebar or provide mechanical connectors per CMS 509.07.

REINFORCED CONCRETE SLEEPER SLAB SURFACE FINISH AND BOND BREAKER:
For type A installation and type C installation, the top surface of reinforced concrete sleeper slab shall be steel troweled for a smooth finish.

Water cure the sleeper slab as per CMS 511.4.A. After water curing has been completed, membranes cure the sleeper slab as per CMS 511.4.B. Apply a second coat of the membrane cure to the sleeper slab prior to approach slab concrete pour at the same dosage rate specified in CMS 518.4.B. The surfaces labeled "bond breaker" on sheets 114 and 13 are used for type A installation and sheets 114 and 13 are used for type C installation.

Repair coating damage identified by the engineer.

METHOD OF MEASUREMENT:
For type A installation and type C installation, the department will measure reinforced concrete sleeper slab by the number of linear feet complete in place and measured along the skew at the end of the approach slab.

For type B installation, sheets 114 through 131, the department will measure reinforced concrete sleeper slab by the number of linear feet complete in place and measured along the skew. See note for "reinforced joint mesh" on sheets 114 and 131. There is no reinforced concrete sleeper slab in type B installation.

BASIS OF PAYMENT:
The department will pay for accepted quantities at the contract price for "item 526 - type * installation" (*: designer should fill in the appropriate type A, type B, or type C which includes):
- 6" GSA, perforated pipe CMS 707.30 underdrain (type A installation)
- Sprayed asphalt material for the underdrain (type A installation)
- Pipe couplings (type A installation)
- Pipe outlets as per std. constr. dwg. DL4-1.1 and pipe installations as per std. constr. dwg. DL4-1.2, if required (type A installation)
- Aggregate drains (type A installation and type C installation)
- Reinforced joint mesh (type A installation)
- Excavation for reinforced concrete sleeper slab (type A installation and type C installation)
- Reinforced concrete sleeper slab (type A installation and type C installation)
- Reinforced steel including supports, tie wires, and if required, mechanical connectors (type A installation and type C installation)
- Bond breaker (type A installation and type C installation)
- Longitudinal construction joint for stage construction, if required for type A installation and type C installation.

The department will pay for the following items separately:
- Reinforced concrete approach slab with curb and/or gutter,
- Flexible asphalt pavement,
- Polymeric modified asphalt joint systems (type A installation)
- Armorless prefabricated joint seal (type C installation)
- Prefabricated expansion joint filler

AC-2-15