Innovative and out-of-the-box infrastructure tools can improve the built environment and increase safety for pedestrians and bicyclists. Engineering is one of the complementary strategies that Safe Routes to School Travel (SRTS) programs use to improve the walking and bicycling environment and enable more children to walk and bicycle to school.

Engineering is a broad concept used to describe the design, implementation, operation and maintenance of traffic control devices or physical measures, including low-cost and high-cost capital measures.

In some situations, changing the infrastructure is the best way to counteract a safety hazard; however, it is important to keep in mind that infrastructure improvements are costly to build and take several years to develop. Even after completion, a change in infrastructure may not be enough to change students’ and parents’ decisions about how to travel to school.

This is why infrastructure countermeasures are most effective when they incorporate SRTS’s other Es — education, encouragement, enforcement and evaluation — in a School Travel Plan (STP).

The infrastructure countermeasures in this toolkit illustrate various engineering techniques that work to create safe routes by:

- Improving paths
- Creating safer crossings
- Slowing down traffic

while recognizing the importance of a balanced roadway environment to accommodate the needs of all modes of transportation — be it on foot, on a bicycle or in a motor vehicle.

The goal of these countermeasures is to create street environments where vehicles travel the speed limit, non-motorized users can travel safely and comfortably, roadway design is context-sensitive and people of all ages and abilities can travel throughout their community.

KEY CONSIDERATIONS

Key considerations associated with SRTS infrastructure countermeasures include:

- Countermeasures must accommodate emergency vehicles as appropriate, a determination that varies depending on road type.
- Any infrastructure improvement could require changes to drainage or utilities.
- Implemented countermeasures must comply with the Americans with Disabilities Act, and measures should be taken to involve persons with disabilities when considering pedestrian improvements.
- Maintenance of trees and landscaping is necessary over time to allow sufficient space on paths and sidewalks for pedestrians and bicyclists. Maintenance of signs and the surrounding vegetation is required to keep signs visible and in good condition.
- Infrastructure and non-infrastructure countermeasures can be combined and often are most effective when they work together.

INFRASTRUCTURE PROGRAMS

This summary is an overview of infrastructure countermeasures for communities and school districts across Ohio. This list, while not all-encompassing, is a great reference to begin identifying possible projects to improve the built environment and that fit with your community’s or school’s SRTS efforts.
BICYCLE RACKS Safe, visible bicycle parking is an important requirement to fully accommodate children who ride bikes to and from school. The ideal location for bike racks may be inside in the school building, where they are protected from weather and thieves, and in an area large enough to accommodate existing and future parking demand. This could be done most easily during new building construction. Where an indoor facility is not possible, outdoor bike parking should be in a visible area near the main entrance to the school. Such a location advertises to all visitors that bicycle parking is visible and easy to access. It also deters would-be thieves or vandals. Outdoor parking should be covered when possible and racks should be secured to a concrete surface.

SCHOOL CROSSWALK SIGNS AND ADVANCE WARNING SIGNS School crosswalk signs should be located on the side of the road and should be Ohio Manual of Uniform Traffic Control Devices (OMUTCD) compliant: currently the signs are of an adult and child walking on a fluorescent yellow-green background. Advance warning signs are similar but include an additional sign that reads “AHEAD” to notify drivers of an upcoming crossing. These signs may be installed at crossings not controlled by stop signs or yield signs. Keep in mind that if they are overused, drivers may be more likely to ignore them.

RESEARCH SAYS
According to FHWA, pedestrian crossing signs in residential areas reduced motorist speeds by 15% and in school zones by 9%.
SCHOOL ZONE PAVEMENT MARKINGS The word “SCHOOL” can be painted on the roadway pavement and act as a horizontal sign. This is a cost-effective way to communicate to drivers that they are in a special school area and should drive with heightened awareness. The markings are more effective when used in conjunction with school zone signs either along the side of the road or overhead.

![Image of school zone pavement markings](image)

SCHOOL SPEED LIMIT SIGNS AND BEACONS Ohio law allows for a 20 MPH speed limit in school zones when children are arriving to school and when they are dismissed. Signs accompanied by flashing beacons should only be activated during arrival and dismissal to be most effective at attracting drivers’ attention.

Generally, signs are located along the side of the road. However, they can also be installed overhead for increased visibility.

School speed limit signs may be installed without flashing beacons on some streets while taking into consideration traffic speeds and volumes, and the area’s general characteristics.

![Image of school speed limit signs and beacons](image)
SPEED FEEDBACK SIGNS Speed feedback signs provide drivers with real-time information of their speed when they pass a sign. Feedback signs should be used in conjunction with speed limit signs so that drivers know how their speed compares to the legal limit. If a car is speeding, the feedback sign could also post a message saying “SLOW DOWN” or flash a warning light to further catch the driver’s attention and cause them to reduce their speed. Speed feedback signs can be permanently installed, like in the picture, or on portable trailers used at key times throughout the school year as part of targeted enforcement efforts.

RESEARCH SAYS

The FHWA found that speed feedback signs in school zones reduced speeds an average of 14% in rural and urban locations.

CHICANES Chicanes create a horizontal diversion of traffic using staggered curb extensions or a serpentine roadway alignment. They discourage, or make it impossible, for drivers to drive in a straight line. This reduces vehicle speeds. The simplest and most basic approach to create chicanes is to alternate on-street parking (parallel or angled) from one side of the street to the other. They force drivers to drive more slowly and with greater awareness, particularly at midblock locations. Chicane structures can beautify the roadway with vegetation and potentially help capture storm water.
SPEED HUMPS Speed humps reduce speeds by requiring vehicles to slow down while traveling over them. They are not emphasized in STPs because they disrupt the movement of all vehicles regardless of whether they are speeding or not. This differs from many other traffic calming devices that do not inconvenience a driver who is traveling the speed limit. Because of these issues, speed humps are only recommended sparingly, and as appropriate, in STPs.

RAISED CROSSWALKS AND RAISED INTERSECTIONS Raised crosswalks elevate crosswalks but not the other portions of an intersection to make pedestrians more visible to drivers. They can also be implemented at midblock locations where no intersection is present to increase awareness and visibility.

Raised intersections are raised areas of a street, including crosswalks. The goal is to reduce vehicle speeds. As vehicles travel over the raised area, drivers’ awareness increases. They also enhance the pedestrian environment and make the intersection more apparent to drivers. Raised intersections can potentially improve the streetscape design through the use of special paving materials.
INTERSECTION SPEED TABLES Intersection speed tables are one type of raised intersection. With a speed table, the intersection is elevated but the crosswalks are not. They could be a lower cost infrastructure treatment instead of raising an entire intersection and its crosswalks.

TRAFFIC CIRCLES Also known as “mini-circles,” traffic circles are round traffic islands in the center of a traditional low-volume intersection on residential streets. Vehicle speeds are reduced because motorists are forced to maneuver around the circle(s). Lower speeds reduce the frequency and severity of crashes, and improve safety for pedestrians and cyclists. They can beautify the roadway with vegetation as well. Traffic circles are not the same as roundabouts.
SIDEWALKS Sidewalks are the most effective countermeasure to increase safety for pedestrians. In urban areas, especially near schools and transit locations, the FHWA recommends sidewalks on both sides of roads. The feasibility of providing sidewalks on all roads must be considered in light of the associated cost, which can be high. In many Ohio cities, children can ride bicycles on sidewalks, so sidewalk improvements benefit both walkers and young cyclists on their way to and from school. An ideal sidewalk includes a grassy, tree-lined buffer between the sidewalk and the street, and a minimum sidewalk width of 5 feet, and up to 6 feet wide for optimal pedestrian safety and comfort.

RESEARCH SAYS
According to the FHWA, the presence of a sidewalk or pathway on both sides of the street corresponds to approximately an 88% reduction in “walking along road” pedestrian crashes.

SHARED ROADWAYS WITH PAVEMENT MARKINGS (BICYCLE BOULEVARDS) Located on residential roads, bicycle boulevards are roadways that allow all types of vehicles, but have been modified to enhance bicycle safety and efficiency. Bicycle boulevards create a safe riding environment for bicyclists who are uncomfortable riding on main roads. They often provide a free-flowing route for bicyclists by placing stop signs on streets intersecting with the bicycle boulevard and not on the boulevard itself.

Enhancements may be as simple as pavement markings with destination signs or as complex as a street with traffic circles and bicycle detection devices at signalized intersections. By creating a road that emphasizes bicycle transportation, motorized traffic slows and the road becomes safer for all users. A residential road with low traffic volumes and no sidewalks is a good candidate for creating a bicycle boulevard to increase safety for children riding their bikes to school.
BICYCLE LANES AND PROTECTED BICYCLE LANES (CYCLE TRACKS) On arterial and collector roads, traditional bike lanes increase safety for cyclists by providing designated space on the side of the road. Striped lines and pavement markings that are painted on the roadway typically delineate them.

In contrast to the paint that separates a traditional bike lane, protected bike lanes are separated from moving vehicles by a physical barrier such as parked cars, raised barriers or bollards (short vertical posts used to direct or control road traffic). Research confirms that protected bike lanes, also called cycle tracks, increase bicycle ridership among cyclists of all ages and abilities, including those who are fearful of riding in traffic.

Generally speaking, sidewalks are the primary recommendation to accommodate young cyclists. However, in some situations where sidewalk installation is not feasible and a cyclist connection is necessary, it is possible that a protected bike lane on existing pavement could be a useful, cost-effective way to increase safety for children biking to and from school. Additionally, crowded sidewalks may not be ideal locations for bicyclists of any age to ride, further underscoring the need to consider on-road options.

BIKE BOXES Bike boxes are an intersection safety design to prevent bicycle-car collisions. They are a painted green space on the road with a white bicycle symbol inside. In some locations, there is also a green bicycle lane approaching the box. Bike boxes create space between motor vehicles and the crosswalk, allowing bicyclists to position themselves ahead of motor vehicles at an intersection.

The main goals of bike boxes are to improve safety by: increasing cyclists’ awareness and visibility; helping cyclists make safer intersection crossings (especially when drivers are turning right and bicyclists are going straight); encouraging bicyclists to make more predictable approaches to and through intersections; and reducing crosswalk encroachment for pedestrians.

RESEARCH SAYS

Studies in Texas and Oregon found that bike boxes increase bicyclists’ overall safety, bicyclists’ obeying the red light and motorists’ awareness of bicyclists in the intersection. They are even more effective when combined with “No Turn on Red” signs.

More details at nacto.org/publication/urban-bikeway-design-guide/intersection-treatments/bike-boxes
ROADWAY RECONFIGURATIONS Also known as road diets, road configurations are countermeasures where the number of vehicular lanes and/or their widths is reduced to provide more space for pedestrians and bicyclists. Roadway configurations can range from relatively simple treatments of restriping the roadway to a full street reconstruction that includes additional sidewalks, trees, medians and other amenities. Roadway configurations are often implemented on four-lane roads to transform them into three-lane roads (one lane in each direction and a center turn lane).

In urban commercial corridors, Roadway configurations can contribute to revitalized business districts. Roadway configurations also help reduce vehicular speeds, reduce crash severity and increase safety for pedestrians and bicyclists. The decreased width of the road allows pedestrians to cross with more ease.

![Before and After images of roadway configurations](image)

REMOTE DROP-OFF AND PICK-UP LOCATIONS A disorganized or congested drop-off and pick-up process can decrease safety for all children regardless of their mode of travel. Students who walk or bike should be able to access the main school entrance safely and comfortably without crossing dangerous conditions as other students get dropped off or picked up by their parents’ cars or school buses. One solution is to designate a remote area, such as a side street adjacent to the school or a remote parking lot, where drop-off and pick-up can occur separate from the majority of the walkers and cyclists. Either adults – parents, staff or other volunteers – or older students can then lead the group to school grounds.

With this countermeasure, all students become pedestrians while on school grounds and safety increases for everyone.

Remote drop-off and pick-up locations can easily be integrated with other non-infrastructure countermeasures such as adult crossing guards, student safety patrol, walking school buses and bike trains. Learn more about these non-infrastructure countermeasures in ODOT's SRTS Non-Infrastructure Toolkit (bit.ly/ODOT-Non-Infrastructure-Toolkit, and scroll down the page).

![Remote drop-off and pick-up location](image)
LIGHTING While the majority of school-related commuting occurs during daylight hours, street lighting is an effective tool to increase safety for pedestrians and bicyclists during inclement weather, nighttime and early morning. As early classes or after-school activities often begin or end when it is dark, lighting is a valuable SRTS countermeasure.

RESEARCH SAYS
According to FHWA, improved lighting at intersections may reduce the rate of pedestrian crash injuries by approximately 40%.

HIGH-VISIBILITY CROSSWALKS Whenever possible and appropriate, diagonal, ladder-style or “continental design” (vertical stripes only) crosswalk markings should be used rather than simply two parallel lines, especially where approaching traffic is not controlled by a stop sign. A crosswalk that has more lines is more visible to drivers, making them more aware of the crosswalk’s presence. Crosswalks can guide pedestrians to the best locations to cross. However, to increase their safety, crosswalks must be accompanied by additional crosswalk and/or advance warning signs or traffic signals in locations with high traffic and speeds.
YIELD LINES Also known as “shark’s teeth,” these markings are a row of solid white triangles painted on the roadway, in advance of a crosswalk. They are often at an uncontrolled location on a multilane roadway. Ohio law requires drivers to yield to pedestrians in a crosswalk. Yield lines indicate the point where drivers are required to yield in advance of the crosswalks. The increased visibility of the crosswalk decreases the chance of a multiple threat crash, where a car in one lane blocks the view of a crossing pedestrian from a car in the adjacent lane. However to increase their safety, crosswalks and yield lines must be accompanied by additional crosswalk and/or advance warning signs.

STOP BARS Stop bars are an advance stop line placed 20 to 50 feet ahead of the crosswalk. They improve the visibility of pedestrians to motorists and help prevent crashes that occur at crosswalks on multilane roads. The Stop Bar line encourages drivers to stop back far enough so a pedestrian can see if a second motor vehicle is not stopping and, if necessary, be able to take evasive action to avoid being hit.

The Stop Bar line should be used with “Stop Here for Pedestrians” signs to alert drivers where to stop to let a pedestrian cross.

In addition, Stop Bars can greatly reduce the likelihood of a multiple-threat crash at unsignalized midblock crossings. Studies have found that advance yield markings at midblock crossings can be particularly useful when combined with signs and beacons, such as the Pedestrian Hybrid Beacon or rectangular rapid flash beacon (RRFB).

RESEARCH SAYS
One study found using a sign alone reduced conflicts between drivers and pedestrians by 67%. With the addition of a Stop Bar line, this type of conflict was reduced by 90% compared to baseline levels.
IN-STREET PEDESTRIAN CROSSING SIGNS In-street pedestrian crossing signs can be installed in the middle of a crosswalk for increased visibility at unsignalized locations. They are most effective at increasing motorist yield rates on low-speed, two-lane streets. They are small enough to be located in the middle of the street or on a median.

![Image of an in-street pedestrian crossing sign](image)

PEDESTRIAN COUNTDOWN SIGNALS Pedestrian signals with additional countdown indicators can help pedestrians crossing the street at signalized intersections. This additional countdown information provides increased comfort and confidence for pedestrians who may otherwise fear that they will not have enough time to cross. They are particularly helpful for slower-moving pedestrians such as children and the elderly. Countdown signals are a low-cost treatment and can be implemented as a standard treatment for all signalized intersections across a jurisdiction, particularly those near schools.

![Image of a pedestrian countdown signal](image)
RECTANGULAR RAPID FLASH BEACONS (RRFB) Rectangular Rapid Flash Beacons are warning devices that alert drivers of pedestrians who intend to cross the street at uncontrolled crossings, such as midblock. A pedestrian crossing sign is paired with a flashing beacon, which consists of two alternating yellow LED lights that flash rapidly like emergency vehicle strobe lights. The device is activated by a pedestrian push button or by passive detection and remains flashing for a period that allows the pedestrian sufficient time to cross.

RESEARCH SAYS
Research for FHWA finds that RRFBs are effective tools for increasing motorists’ yield rates at crosswalks. In one study, yield rates at crosswalks with a four-beacon RRFB system were 88% making it significantly safer for pedestrians and bicyclists. This compared to a 15% yield rate when the crosswalk had a standard overhead yellow flashing beacon.

PEDESTRIAN HYBRID BEACONS Also known as HAWKs (High intensity Activated crossWalk), these countermeasures are pedestrian-activated traffic control devices located on the roadside or on mast arms over midblock pedestrian crossings. They are designed for arterial roads with high traffic and several lanes. The beacons are dark until a pedestrian wants to cross the street. The pedestrian then pushes a button, which activates the signal. This results in a series of flashing and steady lights that allows traffic to stop and the pedestrian to cross safely. According to the FHWA, pedestrian hybrid beacons should only be used at midblock locations in conjunction with a marked crosswalk. In general, they should be used if gaps in traffic are not adequate to permit pedestrians to cross, if vehicle speeds on the major street are too high to permit pedestrians to cross or if pedestrian delay is excessive.

RESEARCH SAYS
Research shows that 97% of drivers yield at an intersection with a Pedestrian Hybrid Beacon (also called a HAWK Signal), compared to other intersection treatments using a red signal or beacon.

Another study found a 54% decrease in bicycle-motor vehicle crashes and a 69% decrease in pedestrian-motor vehicle crashes at intersections with these beacons.
CURB EXTENSION Also known as “bulbouts,” “neckdowns” or “chokers,” curb extensions expand the curb into the roadway for a portion of a block either at a corner or midblock. Curb extensions are appropriate where there is on-street parking. They increase pedestrian safety by shortening crossing distance, reducing pedestrian exposure and improving the ability of pedestrians and drivers to see each other. Curb extensions also can reduce vehicle speeds because they physically and visually narrow the roadway. At a corner, curb extensions inhibit the ability of vehicles to make turns at high speeds. At crossings, curb extensions make the crosswalk more apparent to drivers, encourage them to stop in advance and reduce illegal parking in crosswalks.

MEDIAN REFUGE ISLANDS Also known as “crossing islands” or “center islands,” median refuge islands are located in the center of a crosswalk to help protect crossing pedestrians from motor vehicles. Medians reduce approaching vehicle speeds by narrowing the roadway. They increase pedestrian safety and reduce crashes by shortening crossing distance, reducing pedestrian exposure, increasing pedestrian visibility and allowing crossing to occur in stages. Medians often are appropriate on wide roads where the crossing distance is a barrier for pedestrians. They can be installed at intersections or midblock crossings.

RESEARCH SAYS
According to the FHWA, median refuge islands are one of the most effective and proven methods of increasing pedestrian safety.
TWO-STAGE CROSSING ISLANDS Two-stage crossing islands are a type of median that staggers or offsets the two halves of the crosswalk at the island. The median island directs the pedestrian to face traffic as they proceed across the island before crossing the second half of the street. This increases pedestrian awareness of oncoming vehicles. Additionally, these crossings only stop traffic in one direction at a time, so vehicles don’t have to wait for pedestrians to cross the entire road, only their direction of traffic.

“STAND-BACK” LINES AND WAITING AREAS During arrival and dismissal, there may be intersections near schools where high numbers of school children are waiting to cross. In these locations, “stand-back” lines could be painted on the sidewalk several feet from the curb to designate a waiting area so that children do not stand close to moving traffic.

If there is not sufficient space to accommodate students behind “stand-back” lines, then a larger waiting area could be created by adding a concrete pad on property adjacent to the sidewalk. At locations with adult school crossing guards, the guard can easily direct the children to stand behind the line.
PEDESTRIAN RAILROAD GATES AND CROSSING IMPROVEMENTS
There are a number of ways pedestrian safety can be improved at railroad crossings by selectively using a mix of passive and/or active devices.

The only safe place to cross railroad tracks is at a designated public crossing with either a crossbuck, flashing red lights or a gate.

Passive devices that can be added to railroad crossings include: fencing; channelization; swing gates; pedestrian barriers; pavement markings and texturing; refuge areas; and designing crossings so that the pedestrian paths of travel intersect the railroad track at a 90 degree angle.

Active devices include flashers; audible active warning devices; automated pedestrian gates; pedestrian signals; and variable message signs. In Ohio, railroad crossing “crossbuck” signs must be used whenever railroad tracks intersect a public roadway or pathway.

CLEARING SIGHT LINES In order for students to see and be seen by approaching traffic, it may be necessary to clear intersection sight lines. Obstructions may be overgrown or misplaced vegetation or parked vehicles. Trees or shrubs are planted either by residents or jurisdictions, but may not be maintained. In many urban locations with high-volume and high-speed streets, jurisdictions may need to restrict parking near pedestrian crossings.

Keeping sight lines clear allows pedestrians to make better decisions about when it is safe to cross the street. It also allows drivers to react in a timelier manner when pedestrians are actively using the crossing.
INFRASTRUCTURE COUNTERMEASURES FUNDING OPTIONS

There are a number of different funding options available to help fund construction of infrastructure countermeasures outlined in this toolkit.

In addition to funding through your local municipality or jurisdiction, project funds may also be available through your local Metropolitan Planning Organization (MPO), the Ohio Department of Transportation (ODOT), the Ohio Department of Natural Resources (ODNR) and the Ohio Public Works Commission (OPWC).

While all of the programs identified below are able to provide funding for bicycle and pedestrian facilities, some programs may have additional conditions to meet in order to use the funds.

METROPOLITAN PLANNING ORGANIZATION (MPO)

- Congestion Mitigation and Air Quality Program (CMAQ) – CMAQ funds are available for projects that help reduce transportation-related pollutants in US EPA-designated air quality areas.
- Surface Transportation Program (STP) – STP provides flexible funding that may be used for projects to preserve and improve the conditions and performance on any Federal-aid highway, bridge and tunnel projects on any public road, pedestrian and bicycle infrastructure, and transit capital projects. STP funds can be used for multimodal maintenance, operations and new construction.
- Transportation Alternatives Program (TAP) – TAP funds are available through MPOs and ODOT for projects that advance non-motorized transportation facilities, for historic transportation preservation and environmental mitigation and vegetation management activities. TAP funded activities must be accessible to the general public or target a broad segment of the general public.

Click here to see if your municipality or jurisdiction is served by an MPO: http://regionalcouncils.org/members.

OHIO DEPARTMENT OF TRANSPORTATION (ODOT)

- ODOT’s Safe Routes to School Program funds infrastructure projects and non-infrastructure programs as well as the development of SRTS School Travel Plans. Currently funds cover 100% of costs. Communities must have a completed and current School Travel Plan in order to apply for implementation funding.

Learn more at bit.ly/ODOT-Safe-Routes-funding

- ODOT’s Safety Program funds engineering projects that improve high-crash or severe-crash locations on any public roadway across the state. Funds can cover up to 90% of preliminary engineering, detailed design, right-of-way or construction costs for the project.

Learn more at bit.ly/ODOT-Safety-Program-grants
• TAP – TAP funds are available through ODOT and local MPOs. TAP funds are available for projects that advance non-motorized transportation facilities, support historic transportation preservation and environmental mitigation and vegetation management activities. TAP funded activities must be accessible to the general public or targeted to a broad segment of the general public.

Details are at bit.ly/ODOT-Local-Funding-Opportunities, click on Transportation Alternatives tab.

• State Infrastructure Bank (SIB) – The SIB is a loan and bond program that can be used for up to 100% of the cost of transportation projects. Any highway or transit project eligible under US Code Title 23 is eligible for financing.

Go to bit.ly/ODOT-State-Infrastructure-Bank to learn more.

OHIO DEPARTMENT OF NATURAL RESOURCES (ODNR)

• Recreational Trails – The Recreational Trails Program funds trail development, trail maintenance, trail restoration, trailhead facilities, land acquisition for trails and environment and safety education programs related to trails.

• Clean Ohio Trails Fund – The Clean Ohio Trails Fund works to improve outdoor recreational opportunities by funding trails for outdoor pursuits. Projects should be consistent with statewide or regional trail plans, complete regional trail systems, link population centers with outdoor recreation areas, preserve natural corridors or provide links in urban areas to commuter access. Funds can be used for land acquisition for a trail, trail development, trailhead facilities, engineering and design.

Details are at ohiodnr.gov/grants and click on the Parks & Recreation link.

OHIO PUBLIC WORKS COMMISSION (OPWC)

• Improvement Program (SCIP) and the Local Transportation Improvement Program (LTIP). SCIP is a grant/loan program for roads, bridges, water supply, wastewater treatment, storm water collection and solid waste disposal. LTIP is a grant program specifically for roads and bridges.

Learn more at bit.ly/ohio-public-works-commission-programs.

VARIOUS FEDERAL SOURCES

• The Federal Highway Administration has updated a chart that includes a variety of programs that could fund pedestrian and bicycle projects under U.S. Department of Transportation surface transportation funding programs.

Learn more at bit.ly/USDOT-ped-bike-program-funding