“Outside the Box” Public Involvement
Massillon Rd. Improvements Project
Agenda

- Introduction to Massillon Rd.
- Public Involvement
- Preferred Alternative
- Funding
A Model for Public Involvement

- Multimodal Solution
- Safer Intersection
- Pedestrian and Bicycle Accommodations
- Public Support

Richland Ave. – Athens, Ohio
Public Involvement Process

- Two public meetings and various stakeholder meetings
- Engaged early before any ideas were generated
- First meeting presented what the project team identified as issues
- Had a workshop to ask and listen to public concerns
Existing Cross Section

MASSILLON ROAD TYPICAL SECTION

- **NO SIDEWALK**
 - 3 - 7 FEET SHOULDER (8' STANDARD FOR ADT > 2000 VEHICLES)
 - 12 FEET LANE
 - 12 FEET LANE
 - 3 - 7 FEET SHOULDER (8' STANDARD FOR ADT > 2000 VEHICLES)
 - **MASSILLON RD**
 - NO SIDEWALK

INCONSISTENT SHOULDER WIDTHS AND LARGE NUMBER OF DRIVEWAYS MAKE IT DIFFICULT TO BIKE.
No Bicycle/ Pedestrian Accommodations

- Bicyclists use existing inconsistent shoulder
- Pedestrians must walk in road or grass
Crashes

- Rear-end crashes at intersections
- Angle crashes at intersections
- Driveway related crashes
- Congestion related crashes
Safety Issues

- Driveways too closely spaced
- 24 drives along Massillon Rd.
Safety Issues

- **Sight Distance**
 - Two vertical curves (hills)
 - Difficult to see stopped or approaching vehicles
Congestion Issues

A typical two-lane road can accommodate 10k vehicles/day

Massillon Rd. is currently carrying 19k

...and is projected to carry 28.8k by 2035
Public Involvement Process

- Public confirmed issues
- Identified access issues
- Used questionnaires and online survey to gather input
- Aired on public access channel
Public Responses (Meeting 1)

- Received over 100 responses
- Add additional thru lanes
- Accommodate pedestrians and bicyclists
- Difficulty turning in/ out of driveways
- Flatten two hills
- Reduce speed
- Miscellaneous
Key Meeting in Process

- Public felt like they were part of the process
- Identified issues with the number of driveways
- Suggested solutions such as driveway consolidation
- Asked for additional lanes
Project Goals

- Increase safety of corridor (reduce crashes)
- Provide sufficient capacity
- Accommodate pedestrians and bicyclists
- Improve visual character of corridor
- Minimize R/W Impacts
Concept Consideration

- Developed nine concepts with City staff
- Based on technical analysis and public input
- Screened concepts against goals
- Three concepts best met the goals established
Public Meeting 2

- Second public meeting held
- Shared three alternatives
- Introduced streetscape concepts
- Workshop to seek input on alternatives
Alt 1 - Signals

Advantages

- Minimal R/W impacts at intersections
- Minimizes left turn locations
- Access roads in place for future development

Disadvantages

- Access roads will be costly and very difficult to implement
Alt 2 - Roundabouts

Advantages

- Provides sufficient capacity
- Nearly eliminates all left turns
- Eliminates need for access road system
- Roundabouts proven to be safer than traffic signals
- “Greener” corridor
- Manages speeding

Disadvantages

- R/W impacts at intersections
Alt 3 - Hybrid

Advantages
- Lessens R/W impact at Raber Rd.
- Provides sufficient capacity
- Safer driveway access (reduces direct left turns)
- Nearly eliminates need for access road system
- Roundabouts proven to be safer than traffic signals
- “Greener” corridor
- Manages speeding

Disadvantages
- R/W impacts at intersections
- Less convenient left out of Speedway
Streetscape Layout
Public Responses (Meeting 2)

- Over 200 responses received
- Have met with stakeholders in the corridor to address concerns
- Continuing to engage public on details such as driveway configurations
Recommended Alternative

Modification of Alternative 3

- Increases safety of corridor
- Provides sufficient capacity
- Accommodates pedestrians and bicyclists
- Improves visual character of corridor
- Minimizes R/W Impacts
Next Steps

Public Involvement Process

1 2 3 4

Safety Funding

2015
Begin Detailed Design and Determine R/W Impacts

2016 - 2017
R/W Acquisition and Utility Relocation

2017 - 2018
Construction
Funding

Project Cost Estimate

<table>
<thead>
<tr>
<th>Total Project Costs (design, R/W, construction, inspection)</th>
<th>Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12.4-million</td>
<td></td>
</tr>
</tbody>
</table>

Current Funding

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Dollars Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Funding (ODOT)</td>
<td>$3.36-million</td>
</tr>
<tr>
<td>4TA7/ AM04 (AMATS)</td>
<td>$5.12-million</td>
</tr>
<tr>
<td>Total Funding Obtained</td>
<td>$8.48-million</td>
</tr>
</tbody>
</table>
Public Involvement Success

• Started with blank slate with public
• Asked and listened to concerns throughout entire process
• Multiple meeting times for each meeting
• Well published in the paper, web and social media
• Engaging meetings
• Online survey