Best Practice Findings from the Columbus Pedestrian and Bicyclist Data Collection Pilot Project
Speakers

Daniel Moorhead, P.E.
City of Columbus, Department of Public Service

Kristen Maddox
Alta Planning + Design
Agenda

• Introduction and Purpose
• Counting Devices
• 2014 Program and Results
• Future Plans
Introduction and Purpose
Introduction

Mid-Ohio Regional Planning Commission (MORPC) Bicycle & Pedestrian Count Program

National Bicycle & Pedestrian Documentation Project (NBPD)

USDOT Mayor’s Challenge for Safer People, Safer Streets
Counting Devices
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Inductive Loops</th>
<th>Pneumatic Tubes</th>
<th>Active Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wire loops permanently embedded in the pavement.ụ sense change in magnetic field as a bicycle wheel passes through it</td>
<td>Senses pressure on tube when bicycle passes over. The logger counts a bicycle if the movement matches a bicycle's speed and weight.</td>
<td>An infrared beam is sent from the transmitter to the receiver; when an object (person) breaks the beam for more than a set time, a count is registered</td>
</tr>
<tr>
<td>Logger</td>
<td>Three components: battery (red) processor (black) storage/GSM modem (yellow) contained in a utility handwell</td>
<td>Integrated battery, processor and storage (yellow) for this pilot contained in stainless steel box</td>
<td>Integrated logger and transmitter (shown) sends the beam to a separate receiver, each secured within metal boxes</td>
</tr>
<tr>
<td>Number of Sites and Counters</td>
<td>Six, served by a Type 1 counter with one loop sensor and a Type 2 counter with dual loop sensors (one per lane)</td>
<td>25, served by four counters</td>
<td>19, served by four counters</td>
</tr>
</tbody>
</table>

Types of Automated Counters
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Inductive Loops</th>
<th>Pneumatic Tubes</th>
<th>Active Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wire loops permanently embedded in the pavement; sense change in magnetic field as a bicycle wheel passes through it</td>
<td>Senses pressure on tube when bicycle passes over; The logger counts a bicycle if the movement matches a bicycle's speed and weight.</td>
<td>An infrared beam is sent from the transmitter to the receiver; when an object (person) breaks the beam for more than a set time, a count is registered</td>
</tr>
<tr>
<td>Logger</td>
<td>Three components: battery (red), processor (black), storage/GSM modem (yellow) contained in a utility handwell</td>
<td>Integrated battery, processor and storage (yellow) for this pilot contained in stainless steel box</td>
<td>Integrated logger and transmitter (shown) sends the beam to a separate receiver, each secured within metal boxes</td>
</tr>
<tr>
<td>Number of Sites and Counters</td>
<td>Six, served by a Type 1 counter with one loop sensor and a Type 2 counter with dual loop sensors (one per lane)</td>
<td>25, served by four counters</td>
<td>19, served by four counters</td>
</tr>
</tbody>
</table>
Types of Automated Counters

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Inductive Loops</th>
<th>Pneumatic Tubes</th>
<th>Active Infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wire loops permanently embedded in the pavement sense change in magnetic field as a bicycle wheel passes through it</td>
<td>Senses pressure on tube when bicycle passes over. The logger counts a bicycle if the movement matches a bicycle's speed and weight.</td>
<td>An infrared beam is sent from the transmitter to the receiver; when an object (person) breaks the beam for more than a set time, a count is registered</td>
</tr>
<tr>
<td>Logger</td>
<td>Three components: battery (red), processor (black), storage/GSM modem (yellow) contained in a utility handwell</td>
<td>Integrated battery, processor and storage (yellow) for this pilot contained in stainless steel box</td>
<td>Integrated logger and transmitter (shown) sends the beam to a separate receiver, each secured within metal boxes</td>
</tr>
<tr>
<td>Number of Sites and Counters</td>
<td>Six, served by a Type 1 counter with one loop sensor and a Type 2 counter with dual loop sensors (one per lane)</td>
<td>25, served by four counters</td>
<td>19, served by four counters</td>
</tr>
</tbody>
</table>
Guidebook on Pedestrian and Bicycle Volume Data Collection
Other Technology – Not Used in Pilot Project
Counter Deployment and Siting
Street Types & Context

Wide, mixed traffic, arterial streets

Downtown arterial streets
Street Types & Context

Narrow, mixed traffic, residential streets

Shared-use paths
Street Types & Context
Street Types & Context
Street Types & Context
Location Map and Program Schedule
- Seven rotations
- Equipment deployment/redeployment, data downloading
- Duration:
 - Pneumatic tubes and active infrared: two weeks
 - Inductive loops: four weeks

![Program Schedule](image)
Program Results
Average Daily Bicyclists (Monday – Sunday)
Percent Difference Between Weekday and Weekend Values
Percent Difference Between Weekday and Weekend Values

R² = 0.0731
Protected Bicycle Lanes (Two-way Cycle Track)
FRA-23-12.24 PID 86661

Summit Street
Evaluation Plan
Columbus Ohio

March 4, 2015

Prepared by:
City of Columbus
50 West Gay Street
Columbus, OH 43215

Protected Bicycle Lanes Evaluation Plan
• 3 year evaluation
• Crash Data
• Bicycle and pedestrian counts at 3 locations
• Video collection at 10 locations
• Leverage Queue Box experiment videos
Thank you
Daniel Moorhead, P.E.
City of Columbus, Department of Public Service
DEMoorhead@columbus.gov

Kristen Maddox
Alta Planning + Design
KristenMaddox@altaplanning.com