Greater Cleveland Regional Transit Authority

Transit System Developments
Ohio Transportation Engineering Conference
October 2015
Greater Cleveland RTA Overview

- Service Area Pop.: 1.5 million
- Annual Operating Budget: $255 million (2015)
- $77 million Annual Capital Budget (2015)
- 2,300 Employees
Greater Cleveland RTA Overview

- Fixed Route Bus:
 - 428 Buses
 - 60 Routes
- Downtown Trolleys
 - 17 Trolleys
 - 1.6 million annual trips
Greater Cleveland RTA Overview

- Ohio’s Only Rail Transit System
- Red Line Rail
 - 60 Vehicles
 - 18 Stations, 19 Miles
 - 6.2 million annual trips
- Light Rail (3 lines)
 - 48 Cars
 - 34 Stations, 15.3 miles
 - 2.7 million annual trips
Greater Cleveland RTA Overview

- Light Rail (Blue, Green, Waterfront Lines)
 - 48 Light Rail Cars
 - 34 Stations
 - 15.3 route miles
 - More than 2.7 million annual trips
Greater Cleveland RTA Overview

- Ohio’s First Bus Rapid Transit (BRT)
 - 2 Routes
 - 39 vehicles
 - 79 stations
 - 5 million annual trips (and growing)
Cleveland State Line (Clifton Boulevard)

• $20 million “BRT Light”
 – 4 miles of improvements
 – 16 Articulated Vehicles
 – Peak period lane restriction (with enforcement)
 – Signal Priority
 – BRT “Stations”
 – Streetscape Improvements (median, crosswalks, etc.)

• New retail coming at Clifton-West 117th Street
BRT Success in Cleveland

- HealthLine: Ridership 70% increase since 2008
- Clifton: Increase since 2014
- $4-$6 Billion in HealthLine Corridor Investment since 2008
Cedar-University Circle Red Line Station

- $15 million reconstructed station opened August 2014
- Improves bus interface and access to surrounding uses
 - Case Western Reserve
 - University Hospitals
Little Italy Red Line Station

- New $11.1 million station at Mayfield Road, in the heart of University Circle and Little Italy
- Opened in August; First new Red Line station since 1968
- Redevelopment has anticipated the station opening
RTA’s Priority Transit Corridors

- Identified in RTA 2010-2020 Master Plan
- HealthLine, Blue Line Extensions
- New BRT Corridors
 - W. 25th Street
 - E. 93/E. 105th Street (Crosstown)
 - Other Priority Corridors
- Reconstruction of ADA Key Rail Stations
E. 93rd - 105th Street Corridor Analysis

- Tiger Grant-Funded Analysis of BRT, Complete Streets Improvements
- Served by one of RTA’s strongest crosstown routes
- Connects RTA’s E. Woodhill Red Line Rapid Station and Opportunity Corridor to Cleveland Clinic
West 25th Street Transit Planning Study

- Ohio City’s Main Street
- Connects many high ridership west side routes
- Exploring “BRT light”
 - Peak period parking restrictions, exclusive lanes
 - Coordination of schedules to produce even headway
 - Stop consolidation, stations
 - Traffic, signal improvements
Lakefront Multimodal Center

- Relocate Greyhound from CSU Area
- Replace Amtrak station, position for rail expansion
- Redevelop property between the Shoreway and the Tracks
East 79th Street Station Land Use Plan

- City of Cleveland developing transit-supportive land use plan for area around E. 79th Street Stations
- Result of study analyzing possible closure of stations
- Opportunity Corridor will generate development in the area
East 79th Street Station Land Use Plan

- 2014 Analysis examined potential closing of low-ridership stations
- 300 daily riders
- $15 million replacement cost
- ADA Requirement
East 79th Street Station Land Use Plan

- Analyzed transit system, land use and proposed development
- Conducted extensive outreach with stakeholders, transit users, residents
East 79th Street Station Land Use Plan

o Conclusion: Refurbish Red Line Station
 o Stakeholder and resident opposition to closing
 o Inconvenience for many existing riders
East 79th Street Station Land Use Plan

- Proposed city land use plan *reduced* area density
- City of Cleveland, area community development group committed to reinvestment
East 79th Street Station Land Use Plan

- City, RTA developing Station Area Plan
- Station area plan will help insure that new development from Opportunity Corridor is Transit-Supportive
Challenges

- More than $200 million in unfunded capital needs (state of good repair on existing infrastructure).
- Excludes replacement of all rail cars—RTA’s is the oldest rail fleet in the US.
Health Line Corridor Extension Project

Red Line/HealthLine Extension Major Transportation Improvement Analysis
What is the purpose and need?

Purpose:
- Provide more travel choices
- Improve access, mobility and connectivity
- Provide faster, more-reliable public transit services
- Support redevelopment and channel new development

Need:
- Population and employment migration
- Increasing suburbanization in the study area
- Decreasing access to public transit network
- Increasing vehicle trips
- Increasing congestion
- Lack of reliable travel times
Why improve public transport?

- Reduce Congestion
- Conserve Energy
- Improve Environment
- Increase Choices
Alternatives
Alternative B (Heavy Rail Transit/DMU)

PROPOSED RTA RED LINE/HEALTHLINE EXTENSION
ALTERNATIVE B

LEGEND
ROUTE LENGTH = 5.72 MILES

Euclid Park-N-Ride
Alternative E (Bus Rapid Transit)

PROPOSED RTA RED LINE/HEALTHLINE EXTENSION
ALTERNATIVE E 300

East 300th Street / Shoregate Shopping Center
Alternative G (Bus Rapid Transit)

PROPOSED RTA RED LINE/HEALTHLINE EXTENSION
ALTERNATIVE G 300

East 300th Street / Shoregate Shopping Center
Catalyst for redevelopment
TOD: What Do We Mean?

Patterns of land use and development that feature:

- Transit-supportive density within walking or shuttle distance
- Mixed-use station areas or corridors
- A safe, walkable environment
- Adapting the model to industrial employment centers
A Catalyst for Redevelopment

Why is transit-oriented development (TOD) so important?

- Increases ridership and revenue for RTA
- Stimulates sustainable, thriving communities
- Enhances value capture opportunities to fund the project
- Improves chances of FTA New Starts/Small Starts funding
More simply put:

Transit Investment

Returns to Community

Economic Benefits
TOD Choices Couldn’t Be More Different

Red Line Extension
- Several *stations*
- A swath of industrial land with job destinations but poor connectivity

HealthLine BRT Alternatives
- Several *corridors*
- In the fabric of downtown Euclid, neighborhoods, lakeshore, industry
Urban Fabric Analysis

Red Line/HealthLine Extension Major Transportation Improvement Analysis
Urban Fabric Analysis
Urban Fabric: BRT Extension

- How do Euclid Ave., Lakeshore Blvd., St. Clair Ave., and the connecting streets compare to the HealthLine median corridor?

- Can they accommodate:
 - Distinctive stations?
 - BRT running ways?
 - BRT on a complete street?
Euclid Avenue Cross Section (Downtown)
St. Clair Avenue at East 156th Street
Urban Fabric: Red Line Extension

- Station spacing and location

- Pedestrian connectivity:
 - station design concept
 - horizontal and vertical connections
 - Is there something to connect to?

- Industrial land:
 - Land recycling opportunities vs. active employment centers
 - Is there a concerted public policy to recycle and reposition?

- Last-mile shuttle connections
Drilling Down: GIS, Babbitt (Euclid)
Drilling Down: GIS, Five Points (Collinwood)
Drilling Down: Euclid Ave. (East Cleveland)
A TOD Vision for Red Line Extension

Boston MBTA Assembly Square: heavy rail infill station, 65-acre industrial brownfield transformed by transit-oriented development
A TOD Vision for Bus Rapid Transit

York “VIVA” BRT: multiple corridors, complete streets, TOD plans and policies, a new downtown
Vision – Euclid Avenue at Noble Road
The Business Case
Our objective: Provide an unbiased assessment of transit alternatives resulting in consensus for a preferred alternative.
FTA New Starts Project Evaluation Rating

Summary Rating

Project Justification Rating (50%)
- Environmental Benefits (16.66%)
- Cost Effectiveness (16.66%)
- Land Use (16.66%)

Financial Rating (50%)
- Current Conditions (25%)
- Commitment of Funds (25%)
- Reliability/Capacity (50%)

Cost Effectiveness (16.66%)
- Mobility Improvements (16.66%)
- Economic Development (16.66%)

Congestion Relief (16.66%)

Land Use (16.66%)

Reliability/Capacity (50%)

Commitment of Funds (25%)

Current Conditions (25%)

Financial Rating (50%)

Summary Rating

Project Justification Rating (50%)
- Environmental Benefits (16.66%)
- Cost Effectiveness (16.66%)
- Land Use (16.66%)

Financial Rating (50%)
- Current Conditions (25%)
- Commitment of Funds (25%)
- Reliability/Capacity (50%)

Cost Effectiveness (16.66%)
- Mobility Improvements (16.66%)
- Economic Development (16.66%)

Congestion Relief (16.66%)
Alternatives Evaluation Criteria for Tier 2

- Cost Effectiveness
 - Capital and operating costs
 - Ridership
 - Cost per trip

- Mobility Improvements
 - Reduction in auto VMT
 - Trips per zero car household

- Land Use
 - Urban Fabric analysis
 - Current land use plans

- Economic Development
 - Market Assessment
 - Redevelopment potential
Cost Effectiveness

Annual capital and operating cost per trip.

Number of trips is not an incremental measure but simply the total estimated trips.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are we measuring?</td>
<td>Total annualized cost per project boarding</td>
</tr>
<tr>
<td>What are the sources?</td>
<td>FTA national transit model STOPS</td>
</tr>
<tr>
<td>Reporting methods</td>
<td>FTA standardized cost category workbook Cost effectiveness template</td>
</tr>
<tr>
<td>How did FTA determine rating breakpoints?</td>
<td>Sampling of recent New Start project data.</td>
</tr>
</tbody>
</table>
Cost Effectiveness Index Values

<table>
<thead>
<tr>
<th>Features</th>
<th>Alternative B</th>
<th>Alternative E</th>
<th>Alternative G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminus</td>
<td>Babbitt Road</td>
<td>East 260th Street</td>
<td>East 260th Street</td>
</tr>
<tr>
<td></td>
<td>E. 300th / Shoregate</td>
<td>E. 300th / Shoregate</td>
<td>E. 300th / Shoregate</td>
</tr>
<tr>
<td>Technology</td>
<td>HRT</td>
<td>Rapid +</td>
<td>Rapid +</td>
</tr>
<tr>
<td></td>
<td>DMU</td>
<td>BRT</td>
<td>BRT Lite</td>
</tr>
<tr>
<td>Route Miles</td>
<td>6.5</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost Expenditures ($ millions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPEX</td>
<td>$917</td>
<td>$745</td>
<td>$745</td>
</tr>
<tr>
<td></td>
<td>$416</td>
<td>$431</td>
<td>$416</td>
</tr>
<tr>
<td></td>
<td>$718</td>
<td>$353</td>
<td>$412</td>
</tr>
<tr>
<td></td>
<td>$427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annualized CAPEX</td>
<td>$25.8</td>
<td>$30.7</td>
<td>$30.7</td>
</tr>
<tr>
<td></td>
<td>$22.2</td>
<td>$11.6</td>
<td>$11.6</td>
</tr>
<tr>
<td></td>
<td>$29.3</td>
<td>$13.4</td>
<td>$13.4</td>
</tr>
<tr>
<td>Annualized OPEX</td>
<td>$11.9</td>
<td>$16.3</td>
<td>$6.0</td>
</tr>
<tr>
<td></td>
<td>$30.8</td>
<td>$6.1</td>
<td>$7.1</td>
</tr>
<tr>
<td></td>
<td>$18.3</td>
<td>$7.0</td>
<td></td>
</tr>
<tr>
<td>Annualized Total</td>
<td>$37.7</td>
<td>$47.0</td>
<td>$17.6</td>
</tr>
<tr>
<td></td>
<td>$53.0</td>
<td>$35.4</td>
<td>$32.8</td>
</tr>
<tr>
<td>Ridership</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>13,400</td>
<td>8,200</td>
<td>8,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,800</td>
</tr>
<tr>
<td>Annual (000)</td>
<td>4,020</td>
<td>2,460</td>
<td>2,640</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,120</td>
</tr>
<tr>
<td>Cost Effectiveness (Annualized Cost per Trip)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per Trip</td>
<td>$9.41</td>
<td>$21.59</td>
<td>$17.83</td>
</tr>
<tr>
<td></td>
<td>$6.55</td>
<td>$6.65</td>
<td>$17.64</td>
</tr>
<tr>
<td></td>
<td>$6.57</td>
<td>$6.67</td>
<td></td>
</tr>
</tbody>
</table>
Mobility Improvements

Total Number of Linked Trips using the proposed project, with a weight of two given to trips by transit dependent people. Reductions in daily automobile miles traveled.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are we measuring?</td>
<td>Total “project boardings” with weighting of transit dependent trips. Reductions in daily automobile miles traveled (VMT)</td>
</tr>
<tr>
<td>What are the sources?</td>
<td>Local transit model or STOPS</td>
</tr>
<tr>
<td>Reporting methods</td>
<td>Travel forecast template; mobility template</td>
</tr>
</tbody>
</table>
Reduced Automobile Vehicle Miles Traveled

<table>
<thead>
<tr>
<th></th>
<th>Alternative B</th>
<th>Alternative E</th>
<th>Alternative G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HRT</td>
<td>DMU</td>
<td>Rapid+</td>
</tr>
<tr>
<td>Route Miles</td>
<td>6.5</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Daily Riders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily trips on project</td>
<td>13,400</td>
<td>8,200</td>
<td>8,800</td>
</tr>
<tr>
<td>New transit trips</td>
<td>11,100</td>
<td>5,600</td>
<td>3,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Daily Reductions in Automobile Miles Traveled (VMT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily auto VMT</td>
<td>(75,200)</td>
<td>(45,900)</td>
<td>(23,100)</td>
</tr>
</tbody>
</table>
Mobility Improvements

<table>
<thead>
<tr>
<th></th>
<th>Alternative B</th>
<th>Alternative E</th>
<th>Alternative G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HRT</td>
<td>DMU</td>
<td>Rapid+</td>
</tr>
<tr>
<td>Route Miles</td>
<td>6.5</td>
<td>6.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Zero Car Households</td>
<td>525</td>
<td>525</td>
<td>904</td>
</tr>
</tbody>
</table>

Mobility Improvements

<table>
<thead>
<tr>
<th></th>
<th>Alternative B</th>
<th>Alternative E</th>
<th>Alternative G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily trips on project</td>
<td>13,400</td>
<td>8,800</td>
<td>9,000</td>
</tr>
<tr>
<td>% trips from zero car households</td>
<td>33%</td>
<td>34%</td>
<td>40%</td>
</tr>
<tr>
<td>Transit dependent trips</td>
<td>4,422</td>
<td>3,608</td>
<td>3,400</td>
</tr>
<tr>
<td>Weighted trips</td>
<td>8,844</td>
<td>7,216</td>
<td>6,800</td>
</tr>
<tr>
<td>Non-transit dependent trips</td>
<td>8,978</td>
<td>5,192</td>
<td>5,100</td>
</tr>
<tr>
<td>Total Daily Weighted trips</td>
<td>17,822</td>
<td>12,408</td>
<td>11,900</td>
</tr>
<tr>
<td>Annualized mobility improvements (000)</td>
<td>5,346,600</td>
<td>3,722,400</td>
<td>3,570,000</td>
</tr>
</tbody>
</table>
Examination of the existing corridor and station area development, character, and affordability housing.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are we measuring?</td>
<td>Number of legally binding affordable housing units. Density of population and employment within ½-mile of stations.</td>
</tr>
<tr>
<td>What are the sources?</td>
<td>Census data; affordable housing policies</td>
</tr>
<tr>
<td>Reporting methods</td>
<td>• Land Use Template (Quantitative)</td>
</tr>
<tr>
<td></td>
<td>• Table of quantitative data on land use characteristics</td>
</tr>
<tr>
<td></td>
<td>• Supporting documentation to substantiate statements made in the template.</td>
</tr>
</tbody>
</table>
Benefits of Investments in Public Transit

<table>
<thead>
<tr>
<th>Direct Benefits</th>
<th>Indirect Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility improvements</td>
<td>Increased economic activity</td>
</tr>
<tr>
<td>Travel time savings</td>
<td>Increased competitiveness</td>
</tr>
<tr>
<td>Cost savings</td>
<td>Productivity improvements</td>
</tr>
<tr>
<td>Transportation system efficiency</td>
<td>Land-use patterns change</td>
</tr>
<tr>
<td>Accident reduction</td>
<td>Property values increase</td>
</tr>
<tr>
<td>Energy savings</td>
<td>Residual impacts</td>
</tr>
<tr>
<td>Environmental quality improves</td>
<td>Residual community amenity</td>
</tr>
</tbody>
</table>
Summary Evaluation

- **Alternative B**
 - DMU option is not cost-effective.
 - HRT option provides significant mobility benefits.
 - HRT option *medium* rating for cost-effectiveness without right-of-way costs.
 - HRT costs twice as much as the BRT options and is less cost effective.

- **Alternative E**
 - Rapid+ option is not cost effective.
 - BRT option has fewer mobility benefits than Alternative B.
 - BRT option would qualify for a *medium* rating for cost-effectiveness.
 - Satisfies statutory requirement for dedicated transit lanes.
 - Future "transit village" development.

- **Alternative G**
 - Rapid+ option is not cost effective.
 - BRT option has fewer mobility benefits than Alternative B.
 - BRT option would qualify for a *medium* rating for cost-effectiveness.
 - Does NOT currently satisfy statutory requirement for dedicated transit lanes.
 - Future "transit village" development.
Thank you!