Local Project Prioritization using the Highway Safety Manual
Outline of Presentation

- Introduction
- Background
- The Highway Safety Manual (HSM)
- Wisconsin Network Screening
What was the problem?

ME! ME!

SO HOW DO WE DECIDE WHERE WE SHOULD DO A STUDY?

WELL, WE DON'T HAVE THE STAFF OR TIME TO DO EVERYONE'S...

LET'S LET THE DATA LEAD THE WAY!

SO WHO REALLY NEEDS A STUDY?
What was the problem?

- Geographically disparate areas to review
- Limited window to review sites for concerns
- Limited funding for both safety reviews and
- Need to make objective, data-driven decisions

...how to identify projects with
limited staff,
limited time,
and limited resources
How do we decide?

...but I averaged the most over the past three years!

I had more crashes last year

What about serious crashes?

We have more traffic... doesn’t that count?

OK...
Summary of Alternatives

- Observed Crash Frequency
- High Crash Rate Locations
- Weighted Severity Factors
- Highway Safety Manual Methodology
 - Predicted
 - Expected
- usRAP
Observed Crash Frequency

- Most rudimentary screening option
- Assesses segments & intersections based solely on the raw number of observed crashes

Requirements
- Intersection & segment locations
- Location specific crash counts

Source: safety.fhwa.dot.gov
High Crash Rate Locations

- Builds on High Crash Locations method
- Considers observed crash counts and relative exposure

\[
\text{ObservedCrashRate}_{\text{int}} = \frac{(\text{Crashes / year}) \times 1,000,000}{\text{AADT} \times 365}
\]

\[
\text{ObservedCrashRate}_{\text{segment}} = \frac{(\text{Crashes / year}) \times 1,000,000}{\text{AADT} \times 365 \times L}
\]

- Requirements
 - Intersection and segment locations
 - Location specific crash counts
 - Traffic volumes for segments and intersection entering volumes
Weighted Severity Factors/Equivalent Property Damage Only

- Applies weighting factors to severity levels, e.g.
 - Fatality x 100
 - Incapacitating Injury x 50
 - Non-Incapacitating Injury x 30
 - Possible Injury x 10
 - Property Damage Only x 1

- Expresses crashes in terms of property damage only collisions

- Requirements
 - Segment and intersection locations
 - Location specific crash data
 - Weighting factors
Highway Safety Manual Methodology (HSM) – Predictive Method

• Considers geometric characteristics and exposure rates
• Employs tested statistical methods to predict safety performance
 – Safety Performance Functions
 – Crash Modification Factors
 – Local Calibration Factor
• Results in a predicted crash frequency based on a long term average
• Observed crashes not required
Highway Safety Manual Methodology (HSM) - Expected

- Considers geometric characteristics and exposure rates
- Compares expected and predicted crash frequencies
 - i.e. "Excess Expected Crashes"
usRAP

- Assigns risk ratings to network segments based on geometric and operational characteristics
- Distributes crashes across network based on assigned risk ratings and internal algorithms
- Results in predicted/estimated crash distributions
 - Proposed treatments are based on this analysis and existing geometries

Requirements
- Detailed geometric and operational info
- Network/Region wide fatal crash total
- Various economic data

- Geo-located crashes not required
Putting it together...

SURE!

? COULD YOU PLEASE SUM THAT UP FOR ME?
<table>
<thead>
<tr>
<th>Method</th>
<th>Observed Crash Frequency</th>
<th>High Crash Rate Locations</th>
<th>Weighted Severity Factors</th>
<th>HSM – Predictive</th>
<th>HSM – Expected</th>
<th>usRAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>Simple, tested method</td>
<td>Relatively simple, tested method</td>
<td>Considers collision severity, i.e. higher severity = greater weight</td>
<td>Historic crashes aren’t required</td>
<td>Allows for treatment comparisons</td>
<td>Site specific historic crashes not required</td>
</tr>
<tr>
<td></td>
<td>Targets high raw crash locations</td>
<td>Considers exposure effects</td>
<td></td>
<td>Allows for treatment comparisons</td>
<td></td>
<td>Identifies high risk locations and provides treatment suggestions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visual/Interactive display tool</td>
</tr>
<tr>
<td>Limitations</td>
<td>Omits exposure factors</td>
<td>Limited predictive or comparative capacity</td>
<td>Limited predictive or comparative capacity</td>
<td>Time intensive</td>
<td>Requires SPF, CMF, and Calibration factors for each site</td>
<td>Time intensive</td>
</tr>
<tr>
<td></td>
<td>No predictive or comparative capacity</td>
<td></td>
<td></td>
<td>Requires SPF, CMF, and Calibration factors for each site</td>
<td></td>
<td>Treatments require further scrutiny</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Requires software access/support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proprietary internal processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visual/public results</td>
</tr>
</tbody>
</table>
Data Requirements \(\approx\) Level of Effort

<table>
<thead>
<tr>
<th>Observed Crash Frequency</th>
<th>High Crash Rate Locations</th>
<th>Weighted Severity Factors</th>
<th>HSM - Predictive</th>
<th>HSM - Expected</th>
<th>usRAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Specific Crashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Calibration Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collision & Countermeasure Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **No Predictive Analysis**
- **Predictive Analysis**

Increasing Data Requirements = Increasing Effort
And the winner is...?

So now that you’ve seen the options, what do you think we should use?

The Highway Safety Manual!
The Highway Safety Manual - Purposes

• Released in 2010
• Best factual information and proven analysis tools for crash frequency prediction
• Primary focus is to increase application of analytical tools for assessing safety impacts
The Highway Safety Manual - Uses

- Identify sites with the most potential for crash frequency or severity reduction.
- Identify factors contributing to crashes and associated potential countermeasures to address these issues.
- Evaluate the crash reduction benefits of implemented treatments.
- Conduct economic appraisals of improvements to prioritize projects.
- Calculate the effect of various design alternatives on crash frequency and severity.
- Estimate potential crash frequency and severity on highway networks, and the potential effects of transportation decisions on crashes.
The Highway Safety Manual—How it is applied

- Using Part C—Predictive Method
- Roadway segments and intersections
- Uses Safety Performance Functions (SPF)
 - Equations that estimate average crash frequency as a function of traffic volume and roadway characteristics.

<table>
<thead>
<tr>
<th>Table 1 Facility Types with Safety Performance Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSM Chapter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10 Rural Two-Lane, Two-Way Roads</td>
</tr>
<tr>
<td>11 Rural Multilane Highways</td>
</tr>
<tr>
<td>12 Urban and Suburban Arterials</td>
</tr>
</tbody>
</table>
The Highway Safety Manual – Data Requirements

- Site Characteristic Data
 - Aerial Maps and Google Street View
- Traffic Volume Data
 - WiSDOT traffic count maps
- Crash Data
 - TOPS Lab
Wisconsin Network Screening

- Applied to roads and intersections within Tribal areas
- Applied HSM methodology to rank sites
 - Greatest opportunity to reduce crashes given already low excess expected rates
- Created preliminary designs for improvements
- Completed funding applications
What did we cover?

- 635 segments
 - Lengths varied from 0.1 to 5.2 miles (0.7 mile average)
- 358 intersections
 - Both stop controlled and signalized
- Locations scattered across the state
 - 11 Federally recognized tribes
Top 25 Sites by Observed Crashes

1. Bad River Band of Lake Superior Chippewa Indians
2. Lac du Flambeau Band of Lake Superior Chippewa Indians
3. Stockbridge-Munsee Band of Mohican Indians
4. Oneida Nation of Wisconsin
Site Cluster - 3 (per segment)

Legend
(Observed Crashes per Year)
- >2.0
- 15 - 19
- 10 - 14
- 0.5 - 0.9
- 0.0 - 0.4

Stockbridge-Munsee Band of Mohican Indians
Site Cluster 3 – Individual Crashes

Legend
- O - Property Damage Only
- C
- B
- A
- K - Fatality

Stockbridge-Munsee Band of Mohican Indians
Site Cluster 3

- Seven of the top 30 ranked sites
 - 53 crashes from 2007-11
 - Crash severity ranges from PDO to Fatality

- Included 4 of the top 10 locations

- Had not previously been audited
Other Information

- Steering Committee includes WisDOT and Tribal representatives
- Agreed list of preliminary locations
 - Needed approval and agreement with the respective tribes
- Conducted Road Safety Audits of selected sites
 - Worked with Tribes, County Highway Agencies, Bureau of Indian Affairs (BIA)
RSA Definition

A formal safety performance examination of an existing or future road or intersection by an independent, multi-disciplinary RSA team.
Post RSA

• Prepared initial cost estimates and benefit/cost analyses
• Selected preferred alternatives for each location
• Developed conceptual designs and more detailed cost estimates
• Prepared HSTP/HRRR funding applications
 • Stockbridge-Munsee submitted application earlier this year
Key takeaways

- Desktop exercise reduced fieldwork
 - Improved Safety

- No travel time required
 - Computer and internet connection

- Reduced scheduling conflicts
 - Team could work when convenient and/or in short stints
 - Staff with greater experience could review findings rather than inputting data

- Data-driven analysis
 - Objective
 - Repeatable

- Basic inventory of geometry and assets
 - Reduces future analysis times
 - Provides basic inventory to asset owner
Thank you!

Contact Information:

Andrew Ceifetz, P.E., CAPM
Opus International Consultants
27333 Meadowbrook Rd, Suite 210
Novi, MI 48377

248-539-2222
248-956-1242

Andrew.Ceifetz@opusinternational.com