MSE Walls: From Innovation to Every Day Best Practices

Design It Right…. Build It Right … Care For It Right

Robert A. Gladstone, P.E.
Executive Director
Association for Metallically Stabilized Earth
Earliest MSE – From Natural to Inventive
Modern MSE – Engineering Innovation

- Precast Panels, Steel Reinfs
- Segmental Blocks, Steel or Geosynthetic Reinfs
- Wire Baskets, Steel or Geosynthetic Reinfs

Design It Right... Build It Right ... Care For It Right
MSE Innovation in Ohio

I-90 Cleveland (2015)

In Great Condition! (1984 – 32 yrs)

I-75 Dayton (Wright Brothers)

Design It Right… Build It Right … Care For It Right
MSE Best Practice Is

A strategic and systematic process of...

• Designing
• Constructing
• Inspecting
• Operating/maintaining
• Upgrading/expanding

... MSE walls throughout their lifecycle.
<table>
<thead>
<tr>
<th>Best Practices: Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineer</td>
</tr>
<tr>
<td>Structural Engineer</td>
</tr>
</tbody>
</table>

Design It Right… Build It Right … Care For It Right
Best Practices: Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineer</td>
<td>ROW, wall location, grading, drainage, coordination of disciplines</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td>Specifications, loading</td>
</tr>
<tr>
<td>Geotechnical Engineer</td>
<td>Geotech design parameters (γ, ϕ, c), bearing capacity, settlement, global and compound stability</td>
</tr>
<tr>
<td>MSE Wall Designer</td>
<td>Internal stability, MSE component design, technical training</td>
</tr>
</tbody>
</table>

Design It Right…. Build It Right … Care For It Right
Best Practices: Responsibilities

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineer</td>
<td>ROW, wall location, grading, drainage, coordination of disciplines</td>
</tr>
<tr>
<td>Structural Engineer</td>
<td>Specifications, loading</td>
</tr>
<tr>
<td>Geotechnical Engineer</td>
<td>Geotech design parameters (γ, ϕ, c), bearing capacity, settlement, global and compound stability</td>
</tr>
<tr>
<td>MSE Wall Designer</td>
<td>Internal stability, MSE component design, technical training</td>
</tr>
<tr>
<td>On-site Engineer</td>
<td>Inspection, spec enforcement</td>
</tr>
<tr>
<td>Owner</td>
<td>Maintenance, monitoring</td>
</tr>
</tbody>
</table>
Best Practices: **Assure Durability**

- **Reinforcements**
 - Electrochemical, environmental
 - Installation damage
- **Facings**
 - Concrete Strength
 - Joints, filters, bearing materials
 - Drainage, freeze-thaw
- **Site "Durability"**
 - Drainage, erosion
 - Accidents, spills
Best Practices: Quality Plans and Specs

- Quality results require quality plans and specs
 - Thorough
 - Detailed
 - Realistic and accurate
- Followed by attentive inspection
Best Practices: Inspection

• Control of materials
 – Panels, reinforcements, joint materials
 – Backfill – grain size, moisture, electrochemistry

• Control of processes
 – Wall erection – plumbness, alignment, finish details
 – Backfill placement and compaction
 – Drainage systems/runoff control
 – Barrier/coping

• Record-keeping – facilitates monitoring
Inspection Requires …

- Trained inspectors who understand MSE construction

CONSIDER THIS:
NHI training course
132080:
Inspection of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes

Google "NHI 132080"
Best Practices: Prepare the Foundation

Undercut and Replace

Grade and Proof roll
Foundation Details Matter

Start Right
to
End Right

Level

Smooth

Straight

Design It Right… Build It Right … Care For It Right
Best Practice for Panel Installation

Align

Plumb

Design It Right… Build It Right … Care For It Right
Steel Reinforcement Connections

Insert Connector

Tighten Nut

Design It Right… Build It Right … Care For It Right
Best Practice for Block Facing Installation

Design It Right... Build It Right ... Care For It Right
Geosynthetic Reinforcement Connections

Design It Right… Build It Right … Care For It Right
Critical Best Practice: Drainage

Facing Joints

Backslope

Whole Site

Design It Right… Build It Right … Care For It Right
Adjustments Needed at Obstructions
Drainage: Collect It, Direct It

Design It Right... Build It Right ... Care For It Right
Best Practice: Design for Obstructions

If obstructions *must* be in the MSE fill – *design for them!*

- Recommended max pipe diameter $D = 24''$ *(reinforcement vertical spacing $\leq 33''$)*

- Recommended max foundation diameter $D = 36''$ *(allow room for soil reinforcements!)*

- Offset from panel to obstruction $\geq 1.5 \times D$ *(to allow for reinforcement skew or splay)*
Use MSE-Appropriate Backfill

Clay backfill = poor friction and drainage

Good friction, drainage and performance with granular backfill

Design It Right… Build It Right … Care For It Right
Excellent Compaction for Long Life

Good compaction produces

- Overall stability
- Deformation control
- Drainage and runoff control

Design It Right… Build It Right … Care For It Right
Best Practice: Asset Management to Maximize Life and Performance

- Comprehensive design and specs
- Materials selection
- Construction practices
- QA/QC, inspection, as-builts, photos
- Once built, maintain, monitor condition
- Wall component repairs are possible

➢ IF YOU KNOW WHAT YOU BUILT AND ITS CONDITION!
Best Practices
Yield Good Results

THANK YOU

Design It Right… Build It Right … Care For It Right