Thinking Inside the Box
Leverage What You Have in the Cabinet

John Albeck, P.E., PTOE

Oct. 23, 2016
Topics

- Signal Timing Process
 - Implementation and Fine Tuning
- Isolated Intersections Features
- Coordinated Intersections Features
- Any Intersection Features
Set it and Forget It?

- Signal Timing is Not a “Set it and Forget It” solution
Overarching ideas/principles

- “The industry often promises what it cannot deliver, and then fails to deliver what it could, with better commitment and resources” - Improving Traffic Signal Management and Operations: A Basic Service Model, Richard Denney

- “If you think it's expensive to hire a professional to do the job, wait until you hire an amateur.” - Red Adair
Signal Timing Process

1. Determine Project Goals, Define Success, Determine Schedule
2. Data Collection and Analysis
3. Develop Signal Timing Plans
4. Deploy Signal Timing Plans
5. Fine-Tune Field Operations
6. Performance Evaluation
Signal Timing Process

1. Determine Project Goals, Define Success, Determine Schedule
2. Data Collection and Analysis
3. Develop Signal Timing Plans
4. Deploy Signal Timing Plans
5. Fine-Tune Field Operations
6. Performance Evaluation

Develop Signal Timing Plans
Software Tools

- **Traditional Tools**
 - Transyt 7-F
 - Network and Arterial Optimization
 - Passer II-90
 - Arterial Optimization
 - Sicap / HCS / SOAP
 - Isolated Intersection
 - Arterial Analysis Package (AAP)
 - Data Exchange
 - Traf-NETSIM
 - Test – Simulate Proposed Timings
 - TS/PP-Draft
 - Create TSD / Fine-Tune
Software Tools

- "Recent" Tools
 - Synchro / Vistro
 - Network and Arterial Optimization
 - HCS / TEAPAC
 - Isolated Intersection
 - Vissim, SimTraffic Others
 - Test – Simulate Proposed Timings
 - Tru-Traffic
 - TSD / Optimize / Fine-Tune / TT Studies / QC
Software

- Software is **40 to 50%** of the final signal timing solution (a very important start)
- Software may not mimic all controller features
- Interpreting software output to controller input is critical
Signal Timing Process

- Determine Project Goals, Define Success, Determine Schedule
- Data Collection and Analysis
- Develop Signal Timing Plans
- Deploy Signal Timing Plans
- Fine-Tune Field Operations
- Performance Evaluation

Deploy Signal Timing Plans
Signal Timing Process

- Determine Project Goals, Define Success, Determine Schedule
- Data Collection and Analysis
- Develop Signal Timing Plans
- Deploy Signal Timing Plans
- Fine-Tune Field Operations

Fine-Tune Field Operations
Fine-Tune Field Operations

- Fine-tune patterns and plans
- Monitor critical intersections
- Drive the corridor
 - More than just Cycle / Offset / Split
 - Use controller features to achieve goals
 - Know the hardware
- Use the system to troubleshoot operations
 - Queue spillback, cycle failures, “excess” green time
Isolated Controller Features

- Intersection in Free Operation
 - Volume Density
 - Gap Reduction
 - Variable Initial
 - Multiple Max Times
 - Dynamic Maximum
Coordinated Controller Features

- Coordinated Intersection
 - Inhibit Max
 - Adaptive Splits/Split Demand
 - **Force Mode** (Fixed/Float)
 - Actuated Coordinated
 - Alternate Phase Sequence (lead/lag TOD)
 - Traffic Responsive
Example Controller Option

- Floating Force Off
Example Controller Option

Floating Force Off

Shopping Center

Phase 4
24 Seconds

Phase 3
18 Seconds

School

Phase 4
Phase 3

Complaint: Need more green coming out of the school at the stoplight

Solution: Set Floating FO to “NO” (i.e., Fixed FO)
Any Intersection

- Twice per Cycle Left
- Conditional Service Left
- Detector Features
 - Delay, Extend
 - Queue
 - Detector Switching
- Flashing Yellow Arrow
- Alternate Basic Timings
 - Clearance Intervals
 - Extension Times
- Leading Pedestrian Interval (LPI)
- Automated Traffic Signal Performance Measures
TSM&O Technology Platforms: Automated Traffic Signal Performance Measures (ATSPMs)

- FHWA Every Day Counts initiative for 2017-2018 (EDC-4)
- Real-time and historical functionality at signalized intersections. This allows traffic engineers to measure what they previously could only model.
 - Approach delay, approach volume, arrivals on Red, Purdue Coordination Diagram, Purdue Phase Termination, Speed, Split monitor, turning movement counts
 - Availability of various reports depends on detection
- Used to identify operational deficiencies, optimizing mobility and helping manage traffic signal timing and maintenance. All in an effort to reduce congestion, save fuel costs and improve safety.

http://spm.seminolecountyfl.gov/signalperformancemetrics/
TSM&O Technology Platforms: Automated Traffic Signal Performance Measures (ATSPMs)

- FHWA Every Day Counts initiative for 2017-2018 (EDC-4)
- Real-time and historical functionality at signalized intersections. This allows traffic engineers to measure what they previously could only model.
 - Approach delay, approach volume, arrivals on Red, Purdue Coordination Diagram, Purdue Phase Termination, Speed, Split monitor, turning movement counts
 - Availability of various reports depends on detection
- Used to identify operational deficiencies, optimizing mobility and helping manage traffic signal timing and maintenance. All in effort to reduce congestion, save fuel costs and improve safety.

http://spm.seminolecountyfl.gov/signalperformancemetrics/
Flashlight Yellow Arrow

- Direct replacement for a PPLT phase
 - Studies show that FYA is better understood by motorists
 - Eliminates the left-turn trap
- More intuitive to motorists
- Operational flexibility and versatility
 - Lead/lag and left-turn re-servce
 - Protected-only, PPLT, or permissive-only by time-of-day
 - Conditional based on adjacent crosswalk activity
Flashing Right Arrow

- Change operation based on pedestrian demand
 - Flash, Red arrow, Green arrow
Thanks!

John Albeck, P.E., PTOE
Albeck Gerken, Inc.