Unique Steel Bridge Repair and Strengthening: Two Case Studies

Brandon Chavel, PhD, PE
Jacob Wroten, PE
Presentation Outline

- Lincoln Avenue Bridge
 - Change in span lengths
 - Strengthening
 - Counterweights
 - New pier

- Hawthorn Parkway Bridge
 - Beam crack
 - Repair procedure
 - Bridge raise
Lincoln Ave. Bridge

- Project Location
- Cincinnati, Ohio
- ~3 miles North of Downtown CIN
- Bridge spans over I-71
Lincoln Ave. Bridge

- Part of Design Build Project
- I-71 and Martin Luther King Drive
- Kokosing Construction Company
- HDR Lead Designer
- 12 Bridges total
 - 1 Existing RR Tunnel
 - 2 Bridges Demolished
 - 4 Major Rehabs
 - 4 Minor Rehabs
 - 1 Pedestrian Bridge
Lincoln Ave. Bridge

- Existing Structure
 - 3-span Steel Girder Bridge => 59.0' - 91.25' - 88.5'
 - All supports skewed at 13.5°
 - 7 girders at 9'-2"
 - Non-composite superstructure
Lincoln Ave. Bridge

- **Scope of Work**
 - Change span arrangement to 49.25' – 101' – 88.5' (from 59.0' - 91.25' - 88’.5’)
 - Relocate Pier 1 to accommodate traffic underneath Span 1
 - Raise superstructure: 7.625" at Forward Abutment
 - Maintain traffic on bridge => Phased construction
Lincoln Ave. Bridge

- Careful Consideration of unloading and loading sequence
 - Staged Construction Analysis

- Adjusting Spans resulted in:
 - New Pier
 » 4 column multi-column pier
 » Spread footing on rock
 » Conflict with existing
Lincoln Ave. Bridge

- Strengthening center and end spans
- Shift in bending moment diagram

Span 1 Repair (all girders)

Span 2 Repair (all girders)
Lincoln Ave. Bridge

- Strengthening center and end spans
 - Partial Deck Removal and Replacement

- Span 1 Repair (all girders)
- Span 2 Repair (all girders)
- New Pier 1
- Existing Pier 1

Diagram showing the bridge layout with labeled sections for repair.
Lincoln Ave. Bridge

- Strengthening center span
 - Partial Deck Removal & Replacement
Lincoln Ave. Bridge

- Strengthening center span
 - Partial Deck Removal & Replacement
Lincoln Ave. Bridge

- Strengthening center span
 - Partial Deck Removal & Replacement
Lincoln Ave. Bridge

- Strengthening end span
Lincoln Ave. Bridge

- Strengthening center and end spans
 - Allow flexibility
 - Provide details around stiffeners
 - Exact stiffener locations unknown during design
 - Field scan/survey used by detailer to locate stiffeners
Lincoln Ave. Bridge

- Bridge Raise
 - Non uniform at each support
 - 7.625” at Forward Abutment
 - 0” at Rear Abutment
 - Consideration of Skew and Deck Profile

Rotate about centerline of bearing
Raise at this end
Lincoln Ave. Bridge

- Counterweights in Span 1

Utility Duct
Presentation Outline

- Lincoln Avenue Bridge
 - Change in span lengths
 - Strengthening
 - Counterweights
 - New pier

- Hawthorn Parkway Bridge
 - Beam crack
 - Repair procedure
 - Bridge raise
Hawthorn Parkway Bridge

- Solon, Ohio
- Cuyahoga County
- ~20 miles Southeast of Downtown Cleveland
- Bridge spans over U.S. 422
Hawthorn Parkway Bridge

- Emergency repair due to beam hit
- Full depth crack
- Bridge was closed
- ODOT temporarily plated over crack
Hawthorn Parkway Bridge

- Existing Layout
 - 4-span Steel Beam Bridge
 - 64.0' - 91.0' - 84.0' - 59.0'
 - All supports skewed 39°±
 - Length of 304'±
 - Horizontally curved alignment
Hawthorn Parkway Bridge

- Existing Superstructure
 - 6 Rolled Beams (W36)
 - Dog-legged framing plan
 - 42'-10" out/out deck
 - Two 14' lanes and 8' wide bridle path
 - Safety curbs, parapets, tubular railing and fence
Hawthorn Parkway Bridge

- Replacement options considered
 - Fascia beam with shallower depth section
 - Partial length (Haunched beam section with unique splices)
 - Full length (Replace entire beam, crossframes and deck)
 - Portion of fascia beam of the same depth
 - Additional field splice (reduce vertical clearance)
 - Existing field splice to existing field splice (selected option)
Hawthorn Parkway Bridge

- Beam Hit Mitigation Improvements
 - Raise Hawthorn Parkway
 - Lower U.S. 422
Hawthorn Parkway Bridge

- Selected Solution
 - Replace beam field splice to field splice
 - Partial deck removal
 - Raise Hawthorn Parkway 4" using steel shims
 - U.S. 422 will be lowered with next major road construction project

- Additional Work
 - Backwall and expansion joint modification
 - Patch and seal concrete
 - Salvage railing
 - Replace fence
 - Replace top 2.5" of bridle path
 - Approach slab and pavement
Hawthorn Parkway Bridge

- Design and Analysis
 - 3D Finite Element Modeling
 - Construction sequencing
 - Beam deflections, camber and screed elevations
 - Stress and code checks
Hawthorn Parkway Bridge

- Accurately model construction sequencing using 3D FEM
 - Partial deck removal
 - Partial beam removal
 - Crossframe removal
 - Temporary support location and reactions
Hawthorn Parkway Bridge

- Portion of fascia beam and crossframes removed
Hawthorn Parkway Bridge

- New beam installed
Hawthorn Parkway Bridge

- New crossframes installed
Hawthorn Parkway Bridge

- Steel Details
 - Replaced field splices
 - Field verify bolt hole locations
 - Uses stiffener plates with slotted holes to connect new crossframes
 - 2" steel shim plates under existing bearings to raise superstructure
Screed Elevations
- Account for existing conditions
 - Profile and cross slope
- Contractor determined screed and final deck elevations
- Provided screed points, blank tables and sample calculations
- Ensure positive drainage

Sample Calculations and Table

Screed Lines
Hawthorn Parkway Bridge

- Construction Photos

Existing Cracked Beam
Hawthorn Parkway Bridge

- Construction Photos

- Deck Removal

- Crack and Repair Plate

- Temporary Support
Hawthorn Parkway Bridge

- Construction Photos

- New Beam
- New Splice
- Crossframe Connection Plates
Hawthorn Parkway Bridge

- Completed Project
Hawthorn Parkway Bridge

- Completed Project
Summary

- **Lincoln Avenue Bridge**
 - Revised Span Arrangement
 - Consider loading sequence
 - New Pier
 - Strengthening for moment shift
 - Counterweights

- **Hawthorn Parkway Bridge**
 - Replaced Crack Beam
 - Consider construction sequencing
 - Temporary support reactions
 - Maintain stability of beam during deck placement

- **Flexibility of Steel Bridges**
 - Ability to change span arrangement
 - Ability to replace a single field piece
Acknowledgements

- Lincoln Avenue Bridge
 - Kokosing Construction Company
 - ODOT District 8

- Hawthorn Parkway Bridge
 - Union Industrial Contractors
 - ODOT District 12
QUESTIONS......