Michigan DOT’s Implementation of Performance Engineered Mixtures (PEM) for Concrete Pavement

Ohio Transportation Engineering Conference
October 2, 2018

John F. Staton, P.E.
State Materials Engineer
Michigan DOT

Dan DeGraaf, P.E.
Executive Director
Michigan Concrete Association
Performance Related Specifications

• Efforts in Michigan to develop PRS’ in the 1990’s
• The challenge is…“How do we confidently measure long-term performance during real-time construction?”
• Performance Engineered Concrete Pavement Mixtures (PEM) Pooled-Fund project is focused toward establishing linkage between today’s process control/acceptance and longevity.
Some pavements in Michigan were not performing as expected

- Pavements constructed in the late 1990’s and early 2000’s were experiencing problems with joint deterioration
- Something was not right !!!
- Not an aggregate durability problem
- Rather, it appeared to be aggressive paste decomposition
Premature Joint Decay

• Is it being a caused by:
 – Deicer?
 – Inadequate air-void system?
 – Intermittent SCMs…contractor “option” ?
 – Poor subsurface drainage?
 – All of the above?

• Media barrage was brutal !!
In the “Relative” Beginning,

- Midwest Concrete Consortium (MCC)
 - Established 1997
 - State reports and meeting discussion topics:
 - Aggregate gradation and optimization
 - Aggregate quality
 - Alternative durability-based field tests
 - Alternative materials
 - Early 2000’s
 - Started rolling up our sleeves toward “Engineered” mixture concepts
Evolution of Optimized Concrete Paving Mixtures in Michigan

• 1996 – Took a step back…What are the basics of “Quality Concrete”?
• 1997 – First generation three aggregate optimized aggregate blend, required
 – 4A: 1 ½ inch nominal top size (between AASHTO No. 3 and No. 357)
 – 6AA: ½ to ¾ inch nominal top size (similar to AASHTO No. 57)
 – 2NS: Natural sand
 – Enhanced freeze-thaw quality coarse aggregates
 – Optional SCMs
• 1998 – First interstate reconstruction projects using 40/60 blend
• 1998 – 2003: A few projects with larger top size 2-inch nominal top size
 – Created two valleys…not good…too harsh
• 2004 –
 – Abandoned required standard gradations
 – Coarse, intermediate, and fine labels, with 5-15 and CF/WF criteria
Evolution of Optimized Concrete Paving Mixtures in Michigan

- 2010 – First version of current QC/QA special provision
 - Defined independent QC and QA sampling and testing protocol
 - High Performance Concrete Pavement Mixtures
 - Reduced cementitious material content
 - Total cementitious materials content: 470-564 lbs/cyd
 - Mandatory 25-40 percent SCM replacement
 - Mandatory optimization using CF/WF criteria (*with a few haystack rules*)
 - Percent within limits quality index analysis for pavements
 - Pay factor for air content
 - ASR requirements for fine aggregate (all concrete applications)
 - Significant emphasis on Contractor Quality Control Plans
- 2017 – Expanded HP mixture requirements to structures
Roads Innovation Task Force (RITF)

- SAM and Resistivity will be demonstrated on two concrete demo paving projects:
 - 50-year design life (75-year service life): Grand Region, US-131 from 10 Mile Road to 14 mile Road. Spring 2018 project letting. Summer 2018 paving
 - QC and QA informational shadow testing via “Special Provision for Durability Based Field Testing”
Current Pooled-Fund Project Participation

• 2014 - MDOT along with 18 other state DOTs: “Improving Specifications to Resist Frost Damage in Modern Concrete Mixtures”, TPF-5(297). Completion date: 2019
 – Lead state – Oklahoma DOT
 – This pooled fund initiative is focused on the development of the SAM

• 2017 - MDOT along with 15 other states and the FHWA: “Performance Engineered Concrete Paving Mixtures”, TPF-5(368). Completion date: 2021
 – Lead state – Iowa DOT
 – The National Concrete Consortium (NCC) will be the anchor organization for dissemination of research and outreach for this project (34 DOTs, FHWA, industry, academia)
 – This pooled effort will greatly aide toward developing Michigan-based specifications for incorporation of PEM protocol into the MDOT concrete quality assurance program
State Transportation Innovation Council

• Federal Grant for Deployment of Innovative Technologies
 – Two grants were awarded to MDOT in 2016
 – STIC Application – Implementation of SAM
 • Total: $90,000 ($72,000 Federal Funds, $18,000 State Funds)
 – SAM Acquisition
 – Training, Spec Development, Outreach
 – Implementation
Equipment Acquisition and Training

• Equipment
 – Acquired
 • 19 SAMs, to date
 • 3 Resistivity Meters

• Training 2017/2018
 – Brought Dr. Ley in for two Joint MDOT/MCA SAM training courses
 • Day-long event (classroom and practical laboratory setting) – 53 attendees
 – MDOT technicians
 – MDOT Supervisors
 – County Road Commission
 – Contractors
 – Concrete Suppliers
 – Consultants
 – MCA Staff (“Train the Trainer” prep)
Bringing the Contractor Expertise and Perspective to the Table

- Military Airfield Paving
 - Experience with performance engineered mixtures
 - Optimized gradation really works
 - Support for gradation control specifications
- Looking Beyond PEM
 - Performance engineering is more than just the concrete mixture
 - The pavement structure is also important
 - Drainable
 - Stable
 - Long-term subgrade protections
Specialty Concrete Applications

- Stakeholders,
 - Owner/Specifier
 - Concrete producer
 - Contractor

- How do we translate between individual stakeholder requirements/limitations to produce an end product that is,
 - In compliance with specification requirements
 - Durable – long lasting
 - Aesthetically pleasing
 - Cost-effective
QC/QA Defined Roles

• Quality Control – Contractor Responsibility
 – Construct the project so that it complies with the project plans and specifications
 – Develop, operate and communicate a comprehensive plan to complete the work
 – Adjust plan as necessary to maintain control of the construction process
 – Testing so that only complying materials are incorporated in the work
 – A test of a batch of concrete – Utilize, Modify, Reject or Suspend Production

• Quality Acceptance – Owner Responsibility
 – Be in position to witness QC operations
 – Confirm compliance with plans and specifications
 – A test represents a sublot of concrete – not just one batch
 – Pay for acceptable completed work
PEM Value for Industry

• Super Air Meter (SAM)
 – Improve up front mix quality
 • Proper material selection…e.g. cheapest AEA may not be the best option
 • Batch sequencing
 • Mixing times and timely transport, discharge and finishing of concrete
 – Improve real time control of the concrete quality
 • Knowing your in-situ fresh concrete properties at all times
 • Modifying operations with changing ambient conditions
 – Could improve standard air testing precision
PEM Value for Industry

- **Box Test or V-Kelly**
 - Mix qualification
 - Are the materials suitable for the application
 - Are the materials properly proportioned
 - Will fresh concrete in the lab meet Box and V-Kelly criteria?
 - Changes in material properties, proportions or processes will prompt additional Box or V-Kelly field verification…is the mix still paver-friendly?
 - Note: Well graded mixes can be quicker to unload & easier to finish

- **Resistivity**
 - Proper material selection will dictate end result

- **Other PEM Initiatives**
PEM Value for DOT Agency

- **Super Air Meter (SAM)**
 - Addresses air quality not just total air content
 - Anticipate improved uniformity compared to status quo
 - Acceptance thresholds still need rugged validation
- **Resistivity**
 - Permeability of the concrete – long term performance measure
- **Box Test or V-Kelly**
 - Quality control tools – Value in terms of observing QC activities
 - Adaptability for acceptance is questionable
- **Other PEM initiatives**
Current Optimization versus Tarantula Curve
Initial SAM Data – 2018 Demo Project

SAM Number vs. Total Air Content
2018 30-year Demo Project

- 4.0 inch slump
- 4.5 inch slump
- 5.0 inch slump
- Production paving
 Slump: 0.75 to 1.75 inch

QA SAM Results (Mix# 527-1 unless otherwise noted):

<table>
<thead>
<tr>
<th>Date</th>
<th>SAM #</th>
<th>Total Air</th>
<th>Slump</th>
<th>Conc. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5/2018</td>
<td>0.25</td>
<td>8.5</td>
<td>0.75</td>
<td>61 F</td>
</tr>
<tr>
<td>5/5/2018</td>
<td>0.29</td>
<td>8.0</td>
<td>1.75</td>
<td>60 F</td>
</tr>
<tr>
<td>5/10/2018</td>
<td>0.25</td>
<td>7.2</td>
<td>1.50</td>
<td>64 F</td>
</tr>
<tr>
<td>5/14/2018</td>
<td>0.26</td>
<td>5.6</td>
<td>1.50</td>
<td>61 F</td>
</tr>
<tr>
<td>5/17/2018</td>
<td>0.24</td>
<td>7.6</td>
<td>1.50</td>
<td>70 F</td>
</tr>
<tr>
<td>5/18/2018</td>
<td>0.22</td>
<td>6.8</td>
<td>1.75</td>
<td>63</td>
</tr>
<tr>
<td>5/21/2018</td>
<td>0.23</td>
<td>6.3</td>
<td>0.75</td>
<td>71</td>
</tr>
<tr>
<td>5/22/2018</td>
<td>0.18</td>
<td>7.4</td>
<td>1.50</td>
<td>62</td>
</tr>
<tr>
<td>5/27/2018</td>
<td>0.30</td>
<td>6.9</td>
<td>1.50</td>
<td>78</td>
</tr>
<tr>
<td>5/30/2018</td>
<td>0.17</td>
<td>6.9</td>
<td>3.50</td>
<td>82</td>
</tr>
<tr>
<td>6/1/2018</td>
<td>0.22</td>
<td>7.8</td>
<td>1.50</td>
<td>65</td>
</tr>
<tr>
<td>6/2/2018</td>
<td>0.17</td>
<td>7.0</td>
<td>4.00</td>
<td>65</td>
</tr>
<tr>
<td>6/4/2018</td>
<td>0.17</td>
<td>6.8</td>
<td>1.75</td>
<td>69</td>
</tr>
<tr>
<td>6/5/2018</td>
<td>0.20</td>
<td>6.6</td>
<td>1.25</td>
<td>75</td>
</tr>
<tr>
<td>6/8/2018</td>
<td>0.30</td>
<td>6.6</td>
<td>1.50</td>
<td>75</td>
</tr>
<tr>
<td>6/11/2018</td>
<td>0.24</td>
<td>7.0</td>
<td>1.75</td>
<td>78</td>
</tr>
<tr>
<td>6/12/2018</td>
<td>0.32</td>
<td>7.0</td>
<td>5.00</td>
<td>75</td>
</tr>
<tr>
<td>6/14/2018</td>
<td>0.27</td>
<td>8.0</td>
<td>1.50</td>
<td>73</td>
</tr>
<tr>
<td>6/15/2018</td>
<td>0.21</td>
<td>7.3</td>
<td>4.50</td>
<td>76</td>
</tr>
<tr>
<td>6/18/2018</td>
<td>0.20</td>
<td>6.9</td>
<td>3.25</td>
<td>76</td>
</tr>
<tr>
<td>6/19/2018</td>
<td>0.23</td>
<td>7.2</td>
<td>1.75</td>
<td>76</td>
</tr>
<tr>
<td>6/23/2018</td>
<td>0.23</td>
<td>7.2</td>
<td>1.75</td>
<td>76</td>
</tr>
<tr>
<td>6/28/2018</td>
<td>0.17</td>
<td>8.3</td>
<td>1.75</td>
<td>76</td>
</tr>
</tbody>
</table>
Initial SAM Data – 2018 Demo Project

SAM Numbers – 2018 30-year Demo Project

QA SAM Results (Mix# 527-1 unless otherwise noted)

<table>
<thead>
<tr>
<th>Date</th>
<th>SAM #</th>
<th>Total Air</th>
<th>Slump</th>
<th>Conc. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5/2018</td>
<td>0.25</td>
<td>8.5</td>
<td>0.75</td>
<td>61 F</td>
</tr>
<tr>
<td>5/5/2018</td>
<td>0.29</td>
<td>8.0</td>
<td>1.75</td>
<td>68 F</td>
</tr>
<tr>
<td>5/10/2018</td>
<td>0.25</td>
<td>7.2</td>
<td>1.50</td>
<td>64 F</td>
</tr>
<tr>
<td>5/14/2018</td>
<td>0.26</td>
<td>5.6</td>
<td>1.50</td>
<td>61 F</td>
</tr>
<tr>
<td>5/17/2018</td>
<td>0.24</td>
<td>7.6</td>
<td>1.50</td>
<td>70 F</td>
</tr>
<tr>
<td>5/18/2018</td>
<td>0.22</td>
<td>6.8</td>
<td>1.75</td>
<td>63</td>
</tr>
<tr>
<td>5/21/2018</td>
<td>0.23</td>
<td>6.3</td>
<td>0.75</td>
<td>71</td>
</tr>
<tr>
<td>5/22/2018</td>
<td>0.18</td>
<td>7.4</td>
<td>1.50</td>
<td>62</td>
</tr>
<tr>
<td>5/30/2018</td>
<td>0.30</td>
<td>6.9</td>
<td>1.50</td>
<td>78</td>
</tr>
<tr>
<td>6/1/2018</td>
<td>0.17</td>
<td>6.9</td>
<td>3.50</td>
<td>82</td>
</tr>
<tr>
<td>6/2/2018</td>
<td>0.22</td>
<td>7.8</td>
<td>1.50</td>
<td>85</td>
</tr>
<tr>
<td>6/4/2018</td>
<td>0.17</td>
<td>7.0</td>
<td>4.00</td>
<td>65</td>
</tr>
<tr>
<td>6/5/2018</td>
<td>0.20</td>
<td>6.8</td>
<td>1.75</td>
<td>69</td>
</tr>
<tr>
<td>6/8/2018</td>
<td>0.30</td>
<td>6.6</td>
<td>1.25</td>
<td>75</td>
</tr>
<tr>
<td>6/12/2018</td>
<td>0.24</td>
<td>7.0</td>
<td>1.75</td>
<td>78</td>
</tr>
<tr>
<td>6/13/2018</td>
<td>0.32</td>
<td>7.0</td>
<td>5.00</td>
<td>78</td>
</tr>
<tr>
<td>6/14/2018</td>
<td>0.27</td>
<td>8.0</td>
<td>1.50</td>
<td>73</td>
</tr>
<tr>
<td>6/15/2018</td>
<td>0.21</td>
<td>7.3</td>
<td>4.50</td>
<td>78</td>
</tr>
<tr>
<td>6/18/2018</td>
<td>0.20</td>
<td>6.9</td>
<td>3.25</td>
<td>78</td>
</tr>
<tr>
<td>6/19/2018</td>
<td>0.23</td>
<td>7.2</td>
<td>1.75</td>
<td>78</td>
</tr>
<tr>
<td>6/23/2018</td>
<td>0.17</td>
<td>8.3</td>
<td>1.75</td>
<td>76</td>
</tr>
<tr>
<td>6/28/2018</td>
<td>0.17</td>
<td>8.3</td>
<td>1.75</td>
<td>76</td>
</tr>
</tbody>
</table>
Initial SAM Data – 2018 Demo Project

Hardened Air Content (ASTM C457 – Procedure A)

Min. Specific Surface = 600 in\(^{-1}\)
Max Spacing Factor = 0.008 in.

- Total Fresh Air
- Total Hardened Air
- Effective Air (<250 um)

<table>
<thead>
<tr>
<th>Date</th>
<th>SAM #</th>
<th>Total Air</th>
<th>Slump</th>
<th>Conc. Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/5/2018</td>
<td>0.25</td>
<td>8.5</td>
<td>0.75</td>
<td>61 F</td>
</tr>
<tr>
<td>5/7/2018</td>
<td>0.29</td>
<td>8.0</td>
<td>1.75</td>
<td>60 F</td>
</tr>
<tr>
<td>5/10/2018</td>
<td>0.25</td>
<td>7.2</td>
<td>1.50</td>
<td>64 F</td>
</tr>
<tr>
<td>5/14/2018</td>
<td>0.26</td>
<td>5.6</td>
<td>1.50</td>
<td>61 F</td>
</tr>
<tr>
<td>5/17/2018</td>
<td>0.24</td>
<td>7.6</td>
<td>1.50</td>
<td>70 F</td>
</tr>
<tr>
<td>5/18/2018</td>
<td>0.22</td>
<td>6.8</td>
<td>1.75</td>
<td>63 F</td>
</tr>
<tr>
<td>5/21/2018</td>
<td>0.23</td>
<td>6.3</td>
<td>0.75</td>
<td>71 F</td>
</tr>
<tr>
<td>5/22/2018</td>
<td>0.18</td>
<td>7.4</td>
<td>1.50</td>
<td>62 F</td>
</tr>
<tr>
<td>5/30/2018</td>
<td>0.30</td>
<td>6.9</td>
<td>1.50</td>
<td>78 F</td>
</tr>
<tr>
<td>6/1/2018</td>
<td>0.17</td>
<td>6.9</td>
<td>3.50</td>
<td>82 F</td>
</tr>
<tr>
<td>6/2/2018</td>
<td>0.22</td>
<td>7.8</td>
<td>1.50</td>
<td>65 F</td>
</tr>
<tr>
<td>6/4/2018</td>
<td>0.17</td>
<td>7.0</td>
<td>4.00</td>
<td>65 F</td>
</tr>
<tr>
<td>6/5/2018</td>
<td>0.20</td>
<td>6.8</td>
<td>1.75</td>
<td>69 F</td>
</tr>
<tr>
<td>6/6/2018</td>
<td>0.30</td>
<td>6.6</td>
<td>1.25</td>
<td>75 F</td>
</tr>
<tr>
<td>6/12/2018</td>
<td>0.24</td>
<td>7.0</td>
<td>1.75</td>
<td>78 F</td>
</tr>
<tr>
<td>6/13/2018</td>
<td>0.32</td>
<td>7.0</td>
<td>5.00</td>
<td>78 F</td>
</tr>
<tr>
<td>6/14/2018</td>
<td>0.27</td>
<td>7.0</td>
<td>1.50</td>
<td>73 F</td>
</tr>
<tr>
<td>6/15/2018</td>
<td>0.21</td>
<td>7.3</td>
<td>4.50</td>
<td>76 F</td>
</tr>
<tr>
<td>6/18/2018</td>
<td>0.20</td>
<td>7.0</td>
<td>1.75</td>
<td>76 F</td>
</tr>
<tr>
<td>6/23/2018</td>
<td>0.23</td>
<td>7.2</td>
<td>1.75</td>
<td>76 F</td>
</tr>
<tr>
<td>6/25/2018</td>
<td>0.17</td>
<td>8.3</td>
<td>1.75</td>
<td>76 F</td>
</tr>
</tbody>
</table>
Initial SAM Data – 2018 Demo Project

Hardened Air Content (ASTM C457 – Procedure A)

<table>
<thead>
<tr>
<th>Lab Number</th>
<th>Slump (in.)</th>
<th>Conc. Temp. (°F)</th>
<th>Total Air Content %</th>
<th>Hardened Air Content %</th>
<th>Effective Air Content %</th>
<th>EA/HA</th>
<th>Specific Surf. (in⁻¹) (Min. 600 in⁻¹)</th>
<th>Spacing Factor (in.) (Max. 0.008 in.)</th>
<th>SAM Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>180080</td>
<td>1.50</td>
<td>61</td>
<td>5.6</td>
<td>5.14</td>
<td>3.98</td>
<td>0.774</td>
<td>717</td>
<td>0.0474</td>
<td>0.26</td>
</tr>
<tr>
<td>180146</td>
<td>1.75</td>
<td>63</td>
<td>6.8</td>
<td>6.38</td>
<td>5.57</td>
<td>0.873</td>
<td>846</td>
<td>0.0048</td>
<td>0.22</td>
</tr>
<tr>
<td>180163</td>
<td>0.75</td>
<td>71</td>
<td>6.3</td>
<td>4.36</td>
<td>3.57</td>
<td>0.819</td>
<td>818</td>
<td>0.0420</td>
<td>0.23</td>
</tr>
<tr>
<td>180184</td>
<td>1.50</td>
<td>62</td>
<td>7.4</td>
<td>6.53</td>
<td>5.62</td>
<td>0.861</td>
<td>1751</td>
<td>0.0022</td>
<td>0.18</td>
</tr>
<tr>
<td>180276</td>
<td>4.00</td>
<td>65</td>
<td>7.0</td>
<td>7.01</td>
<td>6.35</td>
<td>0.906</td>
<td>925</td>
<td>0.0046</td>
<td>0.17</td>
</tr>
<tr>
<td>180331</td>
<td>1.75</td>
<td>78</td>
<td>7.0</td>
<td>5.49</td>
<td>4.76</td>
<td>0.867</td>
<td>778</td>
<td>0.0406</td>
<td>0.24</td>
</tr>
<tr>
<td>180387</td>
<td>1.50</td>
<td>73</td>
<td>8.0</td>
<td>6.36</td>
<td>5.42</td>
<td>0.852</td>
<td>816</td>
<td>0.0052</td>
<td>0.27</td>
</tr>
<tr>
<td>180462</td>
<td>1.75</td>
<td>76</td>
<td>7.2</td>
<td>6.12</td>
<td>5.46</td>
<td>0.892</td>
<td>865</td>
<td>0.0046</td>
<td>0.23</td>
</tr>
<tr>
<td>180479</td>
<td>1.75</td>
<td>78</td>
<td>8.3</td>
<td>7.36</td>
<td>6.42</td>
<td>0.872</td>
<td>907</td>
<td>0.0048</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Lessons Learned

• Don’t attempt development and implementation “in a bubble”
• Work within “reasonable” material production and handling constraints
 – What’s good for paving may not work for ready-mix applications
 – Listen to the aggregate producers
• Incremental implementation of new tests…don’t force the issue!
• Consistency between Contractor QC and Agency QA
• Pilot and shadow demonstration projects recommended
• Need sound data prior to implementing for acceptance
• Need continual data collection for PWL calibration
Moving Forward

• Complete STIC obligations
• Partner with MCA to incorporate SAM training module into current MCA Level 1 certified concrete technician course – 2018
• Continue active participation in pooled-fund projects:
 – “Improving Specifications to Resist Frost Damage in Modern Concrete Mixtures”, TPF-5(297),
 – “Performance Engineered Concrete Paving Mixtures”, TPF-5(368)
 – Assist Dr. Weiss toward refining Resistivity, ”F-Factor”, ”Bucket Test”
• MCA is also a contributing partner in PEM project, TPF-5(368)
• Pooled-fund efforts will help steer future MDOT implementation of PEM
Questions?