SAFETY EVALUATION OF THE ADVANCED STOP ASSIST SYSTEM IN THE CONNECTED VEHICLE ENVIRONMENT

Soheil Sajjadi Ph.D. (Project Engineer at Arcadis)

in collaboration with:

Gwamaka Njobelo (Engineer at Arcadis) and Thobias Sando (Associate Professor at University of North Florida)

October 2018, Columbus, Ohio
Presentation Agenda

1. Introduction
2. Overview of Connected and Autonomous Vehicles
3. Modeling Connected and Autonomous Vehicles
4. Research Case Study: Safety Evaluation of Stop Assist System
5. Microsimulation Model
6. Results
• Arcadis (2017-Present)

• Florida Atlantic University (2013-2014)

• North Carolina State University (2008-2013)
Modeling CAV

Macro
- Travel Demand Modeling
- Shared Mobility Impact
- Macro Level Evaluation

Meso
- City Level Analytics
- Impact on Network Assignment
- Speed, Density Analysis

Micro
- Detailed CAV Vehicle Replicated
- Virtual Environment to test CAV Performance
- Microscopic Evaluations
Typical Simulation Workflow

1. Input of Network Data
 - Directly from Map Providers such as Bing, Open Street Map.
 - Networks from external software such as CarMarker, PreScan, and ConceptStation

2. Input of Traffic Data
 - **Traffic Composition**
 - Vehicle Types, Visual Models, Public Transportation
 - Full Interaction
 - **Individual Behavior Settings**
 - Acceleration/Deceleration Profiles
 - Speed and Distance Settings
 - **Calibration**
 - Real World Data

3. Application of Scenarios
 - Input Systematic Variation
 - Design of Experiments
CAV Simulation Aspects

<table>
<thead>
<tr>
<th>INFRASTRUCTURE</th>
<th>VEHICLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will the Vehicle communicate with the infrastructure?</td>
<td>What would be the headway to other vehicles in all situations?</td>
</tr>
<tr>
<td>Impact of CAVs on Highway Speed-Flow Relationship?</td>
<td>What is the acceleration and deceleration profile?</td>
</tr>
<tr>
<td>What about intersection saturation flow?</td>
<td>Will the vehicle form a platoon?</td>
</tr>
<tr>
<td>Will dedicated CAV Infrastructure provide a significant benefit?</td>
<td>How to behave if the next vehicle isn’t an CAV?</td>
</tr>
<tr>
<td>How many CAVs create a “tipping point” in the network?</td>
<td>What if the vehicle in front has less deceleration power?</td>
</tr>
</tbody>
</table>
Key CAV Simulation Data Input

| Car Following Behavior | ✓ CAV keeps smaller standstill distance
| ✓ CAV keeps smaller headway |
Lane Change Behavior	✓ CAV reacts on the signal immediately
Speed Profiles	✓ CAV keeps the desired speed strictly without variation
Acceleration Profiles	✓ CAV accelerates and decelerates equally without variation
Psycho-physical Car Following Model (Wiedemann)

Normal Following

CAV Following

- Constant Headway
- Shorter Headway
- Constant Speed
- Constant Acc/Dec
Vissim and CAV Simulation

How to Model CAV with PTV VISSIM

Calibrating Built-In Models
- Car Following Model
- Lane Change Behavior
- Speed and Acceleration Profiles

Using PTV Vissim Interfaces
- Component Object Module
- Event Based Scripts
- Driver Model Library
- Driver Simulator Library

Internally

Externally
Other External Modifications

<table>
<thead>
<tr>
<th>Event Based Scripts</th>
<th>Driver Behavior DLL</th>
<th>Driving Simulator DLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduced in Vissim 8</td>
<td>• Replaces “internal” driving model with a user defined one</td>
<td>• Driving in the simulation environment</td>
</tr>
<tr>
<td>• Scripts stays active</td>
<td>• Different Vehicle Types</td>
<td>• The driver decided where the vehicle would be in the next time step</td>
</tr>
<tr>
<td>• Reduces the overhead per call</td>
<td>• Specific and Detail Behavior</td>
<td>• Human driver interacting with CAV vehicles</td>
</tr>
<tr>
<td>• Global values retain their value</td>
<td>• Manufacturer Algorithms</td>
<td>• DLL passes info at every single time step</td>
</tr>
<tr>
<td>• Minimizes variable definition</td>
<td>• DLL passes info at every single time step</td>
<td></td>
</tr>
</tbody>
</table>
Sample Case Study

On-board Equipment (OBE)

Dedicated Short Range Communication (DSRC)

Road Side Equipment (RSE)

Signal

Vehicle to Infrastructure (V2I) System
Sample Case Study

- Type
- Status
- Speed
- Acceleration/Deceleration
- Position
- Lane of Movement

Decision
- Pass or Stop?
- Accelerate or Decelerate?
- Advisory Speed

- Signal State
- Signal State Running Time
- Remaining Green Time

- RSE Location
- Stop Bar Location

DSRC Range

Vehicle to Infrastructure (V2I) System

© Arcadis 2016
Microsimulation Model

- **Used Hard Braking** as Safety Surrogate Measure
- **Simulation Calibration**: SHRP2 Naturalistic Driving Study (NDS) through Virginia Polytechnic for Bruce B Downs corridor in Tampa, FL. Calibration is in accord with *FDOT Simulation Guideline*.
- **Signal Timing Data**: **City of Tampa**
- **Market Penetration Rates**: 00%, 20%, 40%, 60%, 80%, 100%
- **Speed Profile**: Average Speed
Results

Speed Profiles for Different Penetration Rates

Safety Benefits for Different Penetration Rates

Paper Link
THANK YOU 😊

soheil.sajjadi@arcadis.com