www.burgessniple.com/event/2018/otec
IMPROVING DESIGN EFFICIENCY AND ACCURACY USING 3D MODELING

Mike Taricska, PE
Burgess & Niple, Inc.

Katie Montoya
ODOT District 6
INTERSECTION INFORMATION

- SR 61, SR 656, Wilson Rd in Delaware County
- Posted 55 mph
- Developing area

Image courtesy of Google
CRASH HISTORY

- 32 crashes from 2014 - 2016, including injuries and 1 fatal
- Skew
- Crest/Sag Combo

Image courtesy of Google
POTENTIAL SOLUTIONS

- 5 alternatives studied and presented to public
 - No Build
 - 4-way Stop
 - Signalization
 - Roundabout
 - SR 61 Profile adjustment

- Roundabout chosen
PROJECT GOALS

○ Project Goals
 ○ Single-lane roundabout
 ○ Limit R/W at NW and SE quadrants (existing homes)
 ○ Improve vertical geometry approaching intersection

○ Guidelines
 ○ NCHRP Report 672
 ○ ODOT L&D Volume 1
ROUNDABOUT CONCEPTS

- 3 Roundabout Designs Investigated
 - Standard, Oval, Peanut
ROUNDABOUT PERFORMANCE CHECKS - PEANUT SHAPE

- Peanut Roundabout chosen
- Improved roundabout geometry
 - Fastest Path
 - Phi Angles
 - Angle of visibility
 - Intersection skew
FASTEST PATH

- Encourage slow vehicle speeds
- Turn movements
 - Thru = R1-R2-R3
 - Left = R4
 - Right = R5

Image courtesy of NCHRP 672
PHI ANGLE

- Angle between approach to crossing departure
- $20^\circ - 30^\circ$ preferred
- Short (~3’) tangent at approach
SWEPT PATH ANALYSIS (TRUCK TURNS)

- WB-62 design vehicle
- Drives truck apron placement/size
- Check for tractor weight shift
Roundabout design is iterative
- Performance checks
- Swept path (truck turns)
- Minimize footprint

OpenRoads = greater design efficiency
OPENROADS (SS4)

- Can be used on any type of project
- Best used in iterative design
- Greater efficiency
- Three conceptual roundabout layouts (horizontal, vertical, 3D model) in **one week**
OPENROADS

- OpenRoads and detailed design
- Microstation Add-in
 - “Smart” linework
 - 3D emphasis
- OpenRoads = Select Series 4
Developed using OpenRoads

Can be used for:
- Conceptual quantities for cost estimate
- Drive simulation
- Cross sections and elevations in detailed design
- Graphical profile design
- Relate horizontal to vertical
- Linked profiles
- 3D linestring built automatically
STAKEHOLDER ENGAGEMENT

- **Key Stakeholders**
 - ODOT District 6
 - DCEO
 - Kingston Township

- **3D Model and OpenRoads**
BUILDING THE 3D MODEL

- Two 3D modeling methods:
 - Corridor Modeling
 - Terrain Modeling
- Both methods create same output
BUILDING THE 3D MODEL

- Define pavement elevations from baseline profile
- 3D elements built once profile defined
- 3D = H+V
BUILDING THE 3D MODEL
BUILDING THE 3D MODEL

- Develop curb, grading, etc. from templates
- Pavement buildup applied from surface
SOUTHBOUND THROUGH MOVEMENT
EASTBOUND THROUGH MOVEMENT - 3D MODEL
WESTBOUND TO SOUTHBOUND
CROSS SECTIONS

- Cut from 3D model(s)
- Viewable during design iterations
- Functions as SS2
 - T-cell
 - Active chain control
 - Cross section sheets
- Can cut non-perpendicular sections
CROSS SECTIONS
OPENROADS AND 3D MODEL

- Developed using OpenRoads
- *Can be used for...*
 - Conceptual quantities for cost estimate
 - Drive simulation
 - Cross sections and elevations in detailed design
OPENROADS FOR QUALITY CONTROL

- 3D model = real time design quality check
- Linked profiles to ensure vertical tie-ins match
PROJECT WORKFLOW - GEOPAK SS2

Design (GEOPAK SS2) → Plan Production (GEOPAK SS2) → Submit
PROJECT WORKFLOW - OPENROADS (SS4)

Design (OpenRoads) → Plan Production (GEOPAK SS2) → Submit
KEY TAKEAWAYS

- OpenRoads improves efficiency in iterative design
- 3D models improve clarity of design and accuracy
CONTACT US

Mike Taricska, PE
Burgess & Niple, Inc.

mike.taricska@burgessniple.com
(614) 459-7272

Katie Montoya
ODOT District 6

katherine.montoya@dot.ohio.gov
(740) 833-8236