Counterweight Trunnion Bearing Rehabilitation for CSXT Bascule Bridge over Buffalo River

John Williams, PE
Stafford Bandlow Engineering

Stephen Percassi Jr., PE
Bergmann

2018 OHIO TRANSPORTATION ENGINEERING CONFERENCE
Project Location
Strauss Bascule

- Counterweight
- Truss
- Span Truss
- Trunnion Bearing
- Counterweight Tower
Trunnion Bearing

Gusset Plate

Sleeve

Pin & Pin Nut

Sleeve Stud

Bushing

Bearing Base
Trunnion Deficiencies
Minimize Disruption to Train Traffic

- Bridge to remain open to rail traffic except:
 (3) 24-hour Sundays

 Work Window 1 – remove pin, sleeve, bushing
 Work Window 2 – install new bushing, sleeve
 Work Window 3 – install new pin
Temporary Jacking System

• Jack from the existing tower
• No external supports
• 800 ton CW
• 700 ton resultant @ each bearing
• 20° from vertical
• Fully detailed on plans
Temporary Jacking System

$$\frac{\text{Temp. Steel}}{\text{Lifted Weight}} = 0.01$$

Horizontal Jacking System

Vertical Jacking System
Vertical Jacking System

- Rivets swapped for A490 bolts
- Vertical jacking force 612 Ton
Vertical Jacking System
Vertical Jacking System

Bronze / Stainless Sliding Surface
Horizontal Jacking System

- A354 Gr. BD Bearing Base anchor bolts
- Stainless to bronze sliding surface
- Horiz. jacking force 254 Ton
Horizontal Jacking System
Jacking Considerations

• Design load increase 40% to account for unknowns
• Instrumentation of gusset plate rotations
• Post-jacking - 48 hrs. & 5 train observation period
• Gusset plates continuously braced
• Temp. pin for live train traffic
• Slow order while on jacks
• Limit transverse jacking
Construction Sequence

Pre-Work Window #1
Construction Sequence
Construction Sequence

Work Window #1
Pin Removal

Work Window #1
Sleeve & Bushing Removal

Work Window #1
Braces & Plastic Sleeve Installed

Work Window #1
Temporary Pin Installed
Construction Sequence

Work Window #2
Construction Sequence
Construction Sequence

End Work Window #2
Bushing Installed

Work Window #2
New Sleeve
Sleeve and Shims Installed

Work Window #2
Temporary Pin

End Work Window #2
Line Boring
Construction Sequence

Work Window #3
Construction Sequence

End Work Window #3
Pin Installation

- Pin oversized 0.005” vs. bore (ANSI FN1 fit)
- Initially cooled in dry ice
- Liquid nitrogen bath to -130° F
- Clearance of 0.013”
- Practiced installation
- Installed in < 3 min
Pin Installation

Work Window #3
Pin Installation

Work Window #3
Construction Sequence
Completed Repair

• Operational testing
• Friction decreased 14%
• Eliminated noises and vibration from bearing
Why so successful?

- High level of planning
- Fully detailed procedure
- Collaboration between owner, engineer & contractor
- Hourly construction schedule during work windows
- “Practice Runs” of pin installation procedure
Questions ?