NOISE BARRIER RESEARCH & ROAD MAP SESSION:
ADVANTAGES & CHALLENGES OF EARTHEN NOISE BERMS

2018 Ohio Transportation Engineering Conference
October 3, 2018

Presenter:
Kimberly Burton, P.E., AICP CTP, LEED AP ND
President, Burton Planning Services | Associate Professor of Practice, The Ohio State University
Introduction

• Kimberly Burton, P.E., AICP CTP, LEED AP ND
 • President of Burton Planning Services
 • Planning & environmental consulting
 • Associate Professor of Practice at The Ohio State University
 • City & Regional Planning

• 20+ years of experience working in the public and private sectors
• Numerous traffic noise analyses, research studies, expert witness
• Co-published a chapter in the *Guide to Planning in Ohio* on “Noise-Compatible Land Use Planning” (2007)
Outline

• Introduction
• Earthen berm study results
• Additional advantages & challenges
• Wrap-up & questions
Introduction

- State DOTs sponsor noise barrier construction programs to mitigate noise impacts.
- Minimal research has been performed to compare earthen mounds & structural noise walls for:
 - Noise mitigation effectiveness
 - Property value effects
- 2 recent research projects in Ohio for Ohio DOT & Ohio Department of Commerce (ODC):
Earthen Berm Noise Reduction Analysis
Problem Statement

- Earthen berms cost less to construct & maintain than structural concrete and fiberglass noise walls.
- There is a limited information about comparative mitigation effectiveness of earthen berms.
- Determining the difference is essential to guiding future noise mitigation implementation strategies.
Study Area Sites

- 45 noise measurement sites
 - 35 earthen berm sites
 - 10 structural wall sites

- Readings were taken at 4 locations at each site:
 - A - top of berm or wall
 - B - rear base of berm or wall
 - C - 100 feet behind B
 - D - 100 feet behind C
Analysis Results

Effects on Noise Levels

- Level of effect from different elements varied:
 - Major Effect
 - Traffic Volumes (especially trucks)
 - Distance Offset
 - Traffic Speed
 - Functional Class (related to traffic volumes)
 - Minor Effect
 - Berm Height (strong performance by Small-Height Berms)
 - Temperature
 - No Effect
 - Vegetation, Berm Length, Wind
Analysis Results

Equivalent Height Comparisons

• 2 methods of calculating the equivalent height ratio:
 • Method 1 – Field Data; Method 2 – Snapshot Scenario Analysis
• Final Calculation
 • Average of Methods 1 & 2
 • For 1.0 foot of berm height, a structural wall would need to be 1.15 feet in height for an equivalent noise reduction.

Cost-Benefit Analysis Overview

• C-B analysis included 3 cost types: Construction, ROW & Maintenance
Analysis Results

Life Cycle Cost Comparisons

<table>
<thead>
<tr>
<th>Berm Cost, Cumulative over time</th>
<th>Wall Cost, Cumulative over Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per unit height/length</td>
<td>Test Demo - Barrier Ht:</td>
</tr>
<tr>
<td></td>
<td>10 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Berm-ROW-Rural/Small City</th>
<th>Berm-ROW-Suburban</th>
<th>Berm-ROW-Urban</th>
<th>Berm-ROW-Other</th>
<th>Wall-ROW-Rural/Small City</th>
<th>Wall-ROW-Suburban</th>
<th>Wall-ROW-Urban</th>
<th>Wall-ROW-Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$250,784</td>
<td>$254,840</td>
<td>$253,057</td>
<td>$254,386</td>
</tr>
<tr>
<td>2</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$255,426</td>
<td>$259,482</td>
<td>$257,699</td>
<td>$259,028</td>
</tr>
<tr>
<td>3</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$260,068</td>
<td>$264,124</td>
<td>$262,341</td>
<td>$263,670</td>
</tr>
<tr>
<td>4</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$264,710</td>
<td>$268,766</td>
<td>$266,983</td>
<td>$268,312</td>
</tr>
<tr>
<td>5</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$269,352</td>
<td>$273,408</td>
<td>$271,625</td>
<td>$272,954</td>
</tr>
<tr>
<td>6</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$273,994</td>
<td>$278,050</td>
<td>$276,267</td>
<td>$277,596</td>
</tr>
<tr>
<td>7</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$278,636</td>
<td>$282,692</td>
<td>$280,909</td>
<td>$282,238</td>
</tr>
<tr>
<td>8</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$283,278</td>
<td>$287,334</td>
<td>$285,511</td>
<td>$286,880</td>
</tr>
<tr>
<td>9</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$287,920</td>
<td>$291,976</td>
<td>$290,193</td>
<td>$291,522</td>
</tr>
<tr>
<td>10</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$292,562</td>
<td>$296,618</td>
<td>$294,835</td>
<td>$296,164</td>
</tr>
<tr>
<td>11</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$297,204</td>
<td>$301,260</td>
<td>$299,477</td>
<td>$300,806</td>
</tr>
<tr>
<td>12</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$301,846</td>
<td>$305,902</td>
<td>$304,119</td>
<td>$305,448</td>
</tr>
<tr>
<td>13</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$306,488</td>
<td>$310,544</td>
<td>$308,761</td>
<td>$310,090</td>
</tr>
<tr>
<td>14</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$311,130</td>
<td>$315,186</td>
<td>$313,403</td>
<td>$314,732</td>
</tr>
<tr>
<td>15</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$315,772</td>
<td>$319,828</td>
<td>$318,045</td>
<td>$319,374</td>
</tr>
<tr>
<td>16</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$320,414</td>
<td>$324,470</td>
<td>$322,687</td>
<td>$324,016</td>
</tr>
<tr>
<td>17</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$325,056</td>
<td>$329,112</td>
<td>$327,329</td>
<td>$328,658</td>
</tr>
<tr>
<td>18</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$329,698</td>
<td>$333,754</td>
<td>$331,971</td>
<td>$333,300</td>
</tr>
<tr>
<td>19</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$334,340</td>
<td>$338,396</td>
<td>$336,613</td>
<td>$337,942</td>
</tr>
<tr>
<td>20</td>
<td>$66,006</td>
<td>$120,093</td>
<td>$96,316</td>
<td>$114,033</td>
<td>$338,982</td>
<td>$343,038</td>
<td>$341,255</td>
<td>$342,584</td>
</tr>
</tbody>
</table>

- Construction, maintenance & ROW costs
- Rural/Small City, Suburban & Urban Locations
- 20-year projections
- Default: 10-foot high barrier, 1,000 feet long
- Year 1: wall costs 2 - 4 times more the berm
- Year 20: wall costs 3 - 5 times more than the berm
Research Approach

Cost-Benefit Analysis & Evaluation

• Part 3: Life Cycle Cost Comparisons
Analysis Results

Noise Barrier Spreadsheet Calculator

- 3 interactive tables for quick estimation of berm & wall life cycle costs.
- Calculates costs, equivalent effective heights, and equivalent costs.
- Developed for easy updates over time to remain useful into the future.
Noise Barrier Spreadsheet Calculator

Includes initial and ongoing costs

Table 1: Berm/Wall Cost Comparison, Same Height/Length/Years

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Berm Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Table 2: Berm to Wall Conversion Cost Comparison, Equivalent Height for Same Mitigation Results

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Equivalent Wall Height</th>
<th>Berm Total Cost</th>
<th>Wall Equivalent Height Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Table 3: Wall to Berm Conversion Cost Comparison, Equivalent Height for Same Mitigation Results

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Equivalent Berm Height</th>
<th>Berm Equivalent Height Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td></td>
<td></td>
<td>0.00</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>
Analysis Results

Noise Barrier Spreadsheet Calculator

- Example:
- Rural Berm/Wall
- 10-Year Cost Estimates

NOISE BARRIER SPREADSHEET CALCULATOR

Includes initial and ongoing costs

Look-Up Table 1: Berm/Wall Cost Comparison, Same Height/Length/Years

<table>
<thead>
<tr>
<th>Enter Berm or Wall Info</th>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Berm Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>
Analysis Results

Noise Barrier Spreadsheet Calculator

- Example:
 - Rural Berm/Wall
 - 10-Year Cost Estimates

<table>
<thead>
<tr>
<th>NOISE BARRIER SPREADSHEET CALCULATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes initial and ongoing costs</td>
</tr>
</tbody>
</table>

Look-Up Table 1: Berm/Wall Cost Comparison, Same Height/Length/Years

<table>
<thead>
<tr>
<th>Enter Berm or Wall Info</th>
<th>Berm Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (ft)</td>
<td>Length (ft)</td>
<td>Years</td>
</tr>
<tr>
<td>ROW-Rural/Small City</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Analysis Results

Noise Barrier Spreadsheet Calculator
- Example:
- Rural Berm/Wall
- **20**-Year Cost Estimates

<table>
<thead>
<tr>
<th>NOISE BARRIER SPREADSHEET CALCULATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes initial and ongoing costs</td>
</tr>
</tbody>
</table>

Look-Up Table 1: Berm/Wall Cost Comparison, Same Height/Length/Years

<table>
<thead>
<tr>
<th>Enter Berm or Wall Info</th>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Berm Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td>10</td>
<td>1,000</td>
<td>20</td>
<td>$66,006</td>
<td>$338,982</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td></td>
<td></td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>
Analysis Results

Noise Barrier Spreadsheet Calculator

- Example:
 - Rural & Suburban Berm/Wall
 - 20-Year Cost Estimates

Look-Up Table 1: Berm/Wall Cost Comparison, Same Height/Length/Years

<table>
<thead>
<tr>
<th>Enter Berm or Wall Info</th>
<th>Height (ft)</th>
<th>Length (ft)</th>
<th>Years</th>
<th>Berm Total Cost</th>
<th>Wall Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW-Rural/Small City</td>
<td>10</td>
<td>1,000</td>
<td>20</td>
<td>$66,006</td>
<td>$338,982</td>
</tr>
<tr>
<td>ROW-Suburban</td>
<td>10</td>
<td>1,000</td>
<td>20</td>
<td>$120,093</td>
<td>$343,038</td>
</tr>
<tr>
<td>ROW-Urban</td>
<td>10</td>
<td>1,000</td>
<td>20</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>ROW-Other</td>
<td>10</td>
<td>1,000</td>
<td>20</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Includes initial and ongoing costs
Study Conclusions

- Earthen berms are more cost effective and more effective at noise reduction than structural noise walls.
- Small-height earthen berms (5’-6’) were found to be very effective at reducing noise on both low & high-volume roadways.
- ODOT should consider prioritizing earthen mounds over structural walls for new barrier construction & old barrier replacement but opportunities will be very limited.
- Successful implementation should result in a significant annual costs savings - for construction and maintenance, compounding over time.
- Qualitative benefits should be emphasized too.
Additional Advantages & Challenges
Advantages

- **Property Values** - “Property Valuation Comparison on Noise-Mitigated Residences”
 - Study completed in 2017 for the Ohio Department of Commerce (through OSU)
 - Objective: to determine if property values are higher for residences located behind earthen berms or behind structural noise barriers – or if there is no measurable difference.
- **Hypotheses:**
 1. Property values should be higher for noise-mitigated residences than non-mitigated residences. Why? - Due to the benefit of reducing noise levels.
 2. Property values should be slightly higher for residences behind earthen mounds than for residences behind structural walls. Why? - Due to the higher aesthetic value of the natural landscaped elements of earthen berms over structural walls.
Advantages

- Property Values
 - Study Area Sites
 - 1 – Canton/I-77
 - 2 – Orange Twp/I-71
 - 3 – Grove City/I-71
 - 4 – Hilliard/I-70
 - 5 – Centerville/I-675
 - 6 – Cincinnati/I-71
Advantages

• Property Values

 • Study Conclusions
 • The hedonic method models indicated that both hypotheses could be true – or not true.
 • The more variables that were included in the model the less significant noise mitigation became & the more skewed the noise mitigation effects became from the hypotheses.
 • Simplified analysis with only 2 variables (average total value, square footage) proved both hypotheses true.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Wall</th>
<th>Berm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Parcels</td>
<td>153</td>
<td>562</td>
<td>516</td>
</tr>
<tr>
<td>Avg Total Value/Parcel</td>
<td>$93,071</td>
<td>$183,647</td>
<td>$189,859</td>
</tr>
<tr>
<td>Avg Sq Ft/Parcel</td>
<td>1,531</td>
<td>2,186</td>
<td>2,011</td>
</tr>
<tr>
<td>Total Value/ Sq Ft/Parcel</td>
<td>$53.39</td>
<td>$77.18</td>
<td>$90.06</td>
</tr>
</tbody>
</table>
Advantages

• Aesthetics/visual effects
 • Earthen berms provide a more natural appearance and a less confined feeling.
 • Earthen berms provide a more aesthetically-pleasing noise barrier type with grasses, bushes, trees, and flowers.
Advantages

• Environmental effects
 • Structural noise walls create a physical barrier that prevents wildlife from crossing roadway corridors; earthen berms are more accessible.
 • Vegetative covering of earthen berms can create habitat for native plant and animal species.
 • Earthen berms are able to absorb many of the air pollutants caused by vehicles.
Advantages

• Reduced construction impacts
 • Earthen berms are simple to construct –
 • No issues or risks with manufacturing and transporting materials
 • No invasive drilling or auguring
 • No special equipment, such as cranes
 • Can be built with waste materials from nearby construction projects.
Challenges

- **Ground space**
 - **Top challenge** - not enough ground space to build an earthen mound.
 - Example: 10-foot high earthen mound with a 4:1 slope needs 80 feet of ground width.
 - Current Ohio regulations do not allow for land acquisition for noise mitigation.
Challenges

- Potential conflicts with utilities, lighting, drainage, clear zones
 - Depending on the location, some design features can be in the way (same as with structural walls).
 - Can necessitate re-design, slow down the construction schedule, and increase construction costs.
Challenges

• Vegetation selection & mowing
 • There can be challenges with the vegetation on the earthen mound, such as selecting the best vegetation for un-mowable areas and coordinating mowing.
Wrap-Up
Wrap-Up

• Earthen berm study results
 • Cost, lifespan, maintenance advantages
 • Mitigation effectiveness

• Additional advantages & challenges
 • Property value advantages?
 • Aesthetic, environmental, construction advantages
 • Ground space, design, vegetation maintenance challenges
Wrap-Up

• These studies were aimed at providing accurate information on noise mitigation options to federal and state agencies and local municipalities.

• The results of these studies could result in priority and policy changes at the state level to save money and increase noise mitigation effectiveness.

• In addition, communities could change their zoning codes at the local level in order to help improve residents’ quality of life and property values along major roadways.
NOISE BARRIER RESEARCH & ROAD MAP SESSION:
ADVANTAGES & CHALLENGES OF EARTHEN NOISE BERMS

QUESTIONS?
Contact Information:
Kimberly Burton
(614) 392-2284
kburton@burtonplanning.com
www.burtonplanning.com