Valuing the Economic and Health Impact of Bicycling in Wisconsin

Maggie Grabow, MS, MPH
PhD Candidate

Melissa Whited, MS
Micah Hahn, MPH

Nelson Institute for Environmental Studies
University of Wisconsin School of Medicine and Public Health
HCAT - 9 May 2011

Trail Map

- Part I: Background
- Part II: Health, Air Quality, and Greenhouse Gas Mitigation Impact
- Part III: Economic Impact of Bicycling in Wisconsin
- Part IV: Implications/Conclusions
Part I: Background

Ten Leading Causes of US Deaths per Year

(CDC, 2004)
50% of Americans do not meet physical activity recommendations

2/3 of Americans are overweight or obese

100+ cities in nonattainment--EPA 8-hour Ozone Standards

CARS: substantial emitters of particulate matter and precursors to ozone

50+ cities in nonattainment--EPA PM$_{2.5}$ Standards
Asthma and Air Pollution

- Natural experiment during 1996 Summer Olympic games in Atlanta
- Peak morning traffic decreased 23% and peak ozone levels decreased 28%
- Asthma-related emergency room visits by children decreased 42%
- Children’s emergency visits for non-asthma causes did not change during same period

Friedman et al. JAMA 2001;285:897

1/3 of Wisconsin CO₂ emissions come from transportation sector

US Dept. of Energy, 2005
In the United States…

• 40% of all car trips in the US are **two miles or less**

• 50% of the working population commutes **five miles or less** to work

• more than 82% of trips **five miles or less** are made by personal motor vehicle

NHTS 2001

THE FACTS

• **OBESITY** - a problem of **EPIDEMIC** proportions

• **PHYSICAL INACTIVITY** increasing

• Cities failing to meet **AIR QUALITY** standards

• **GREENHOUSE GAS EMISSIONS** rising

What does this mean for our health and the economy?
Biking for Co-Benefits: Health & $$

Part II: Health Impacts of Bicycling
Personal Fitness and Human Health

if sedentary people meet recommended physical activity standards in WI for 1 year...

$318,589,585

(in Milwaukee and Madison)

- Breast cancer (34%)
- Colorectal cancer (43%)
- Diabetes Type II (31%)
- Heart Disease (47%)
- Stroke (39%)

WHO 2005

Air Quality and Human Health

Reducing 20% of urban short car trips (5 mi or less) with bicycle trips in Milwaukee and Madison

Total Economic Benefit from reduced PM$_{2.5}$: $85,807,200

+ Total Economic Benefit from reduced O$_3$: $3,407,000

= $89,214,200 annually
Greenhouse Gas Mitigation

Reducing CO₂ emissions by commuting by bike instead of by car

20% Madison bikers ≈ $336,577 value**
20% Milwaukee bikers ≈ $821,282 value**

Total value: $1,157,859**

**Based on European Climate Exchange, November 2009

Summary and Implications

• Value of Additional Physical Activity: $318,589,585
• Value of Air Quality Improvement: $89,214,200
• Value of Greenhouse Gas Reductions: $1,157,859
• Significant Implications for the State and Region
• Co-Benefits of Replacing Short Car Trips with Bicycling
Part III: Economic Impact of Bicycle Recreation

Determining how much cyclists contribute to the economy:

Key Questions:

1. What kind of cycling do people do for recreation?
2. How many cyclists in each category?
3. How much do they spend?
What kind of cycling?

• Total days of recreational bicycling in Wisconsin = 8,324,916.
 (Assume 48.7% are non-residents, based on Elroy-Sparta study)

• 2005 UWEX Study: 100,000 recreational bicycle-days on Jefferson County roads.

• Jefferson county:
 • 1.2% of Wisconsin's good biking roads
 • 1.2% of Wisconsin's bicyclists.

How many road cyclists?

Arnold Reinhold Wikipedia Commons
How many trail cyclists?

2008 DNR Trail Pass Survey: 1,226,747 days biking on 636.5 miles of DNR trails.
Extrapolate to all 1,915 miles of trail open to cyclists in Wisconsin = 3,691,034 cycling days on WI trails.

Chequamegon Area Mountain Bike Association

GBCC 2006 Single-day Events and Tours

• Average of 1075 cyclists per event.
• 57 single-day tours/events listed
• Total = 61,289 cycling-days
Multi-day Tours

- Average number of cycling days (cyclists x event days) = 1765.
- 22 multi-day tours listed
- Total = 38,834 cycling-days

BFW WDOT, 2006

How much do they spend?

<table>
<thead>
<tr>
<th>Bicycling Activity</th>
<th>Resident Daily Expenditure</th>
<th>Non-Resident Daily Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadways</td>
<td>$39.57</td>
<td>$53.55</td>
</tr>
<tr>
<td>Trails</td>
<td>$17.99</td>
<td>$33.95</td>
</tr>
<tr>
<td>Single-Day Bike Events/Tours</td>
<td>$76.17</td>
<td>$76.17</td>
</tr>
<tr>
<td>Multi-Day Tours</td>
<td>$80.84</td>
<td>$80.84</td>
</tr>
</tbody>
</table>

How do they spend it?

Wisconsin Resident Trail Cyclists

- Dining and Drink
- Accommodation
- Transportation (gas & auto)
- Retail Shopping
- Govt. Revenue (fees collected)
- Other (miscellaneous retail)
- Grocery and Convenience Stores
- Entertainment

Direct Economic Impact

Cycling Days × $/day = Direct Economic Impact

Stynes 2006
Direct Economic Impact

<table>
<thead>
<tr>
<th>Bicycling Activity</th>
<th>Total Number of Bicycle Person Days</th>
<th>Direct Impact Residents</th>
<th>Direct Impact Non-Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadways</td>
<td>8,324,916</td>
<td>$168,990,884</td>
<td>$217,104,236</td>
</tr>
<tr>
<td>Trails</td>
<td>3,691,034</td>
<td>$32,045,462</td>
<td>$64,835,708</td>
</tr>
<tr>
<td>Single-Day Bike Events/Tours</td>
<td>61,289</td>
<td>$2,420,987</td>
<td>$2,596,764</td>
</tr>
<tr>
<td>Multi-Day Tours</td>
<td>38,834</td>
<td>$1,281,572</td>
<td>$1,477,229</td>
</tr>
<tr>
<td>Total</td>
<td>12,116,073</td>
<td>$204,738,904</td>
<td>$286,013,937</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>12,116,073</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAND TOTAL: $532,883,557

What sectors are affected?

Agricultural Products
- Purchased Inputs (seeds, fertilizer, equipment)
- Employees
- Taxes

Wholesale Food Processors/Distributors
- Purchased Inputs (ag produce)
- Employees
- Real Estate
- Taxes

Restaurants
- Purchased Inputs (Ingredients, appliances, etc.)
- Employees
- Real Estate (Rent, buildings)
- Taxes

Economic Interlinkages:
Many industries affected through intermediate supplies
Input-Output Model

- **Indirect Impacts**: For every $ spent in one sector, it accounts for the impacts of this on supplying sectors, and on the labor force.

- **Induced Impacts**: For every $ of output in an industry, a worker is paid. Workers then respend some of their earnings in the economy.

Total Economic Impact

\[
\text{Total} = \text{Direct} + \text{Indirect} + \text{Induced}
\]
Total Economic Impact

Output Impact

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Indirect</th>
<th>Induced</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin Resident</td>
<td>$204,738,560</td>
<td>$69,782,528</td>
<td>$80,255,232</td>
<td>$354,776,064</td>
</tr>
<tr>
<td>Non-Resident</td>
<td>$286,013,440</td>
<td>$98,398,976</td>
<td>$112,129,536</td>
<td>$496,541,696</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$490,752,000</td>
<td>$168,181,504</td>
<td>$192,384,768</td>
<td>$851,317,760</td>
</tr>
</tbody>
</table>

Employment Impact

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Indirect</th>
<th>Induced</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin Resident</td>
<td>3,797</td>
<td>543</td>
<td>717</td>
<td>5,058</td>
</tr>
<tr>
<td>Non-Resident</td>
<td>5,319</td>
<td>763</td>
<td>1,002</td>
<td>7,083</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9,116</td>
<td>1,306</td>
<td>1,719</td>
<td>13,133</td>
</tr>
</tbody>
</table>

$924 million

Part IV: Implications and Conclusions
Commuters and Spending

- 0.6% = Wisconsin residents bike to work
- 1.8% = Wisconsin’s federal transportation dollars for bike/pedestrian infrastructure
 - median: 1.41% (range: 0.24% (SC) – 5.40% (RI))
- $4.79 = Wisconsin per capita spending on bike/pedestrian projects
 - median: $4.18 (range: $1.02 (SC) – $38.16 (AK))
- In comparison, 63.3% of Wisconsin’s 2009-11 transportation budget allocated to building new and maintaining existing roadways

Implications

How do our results compare?

- Non-resident bicycle tourism economic impact: $496 million
- Total tourism in Wisconsin: $12.8 billion
 - Small fraction, but still important
- Accuracy? Need for a more comprehensive survey.
- So…Build a paved multi-use bike path at $115,000 per mile? Payback < 2.5 Years
Recreation + Manufacturing, Sales, & Service

Economic Impact of Manufacturing, Sales, & Services*	$593,787,990
Economic Impact of Tourism & Recreation	$924,211,000
TOTAL Economic Impact	$1,517,998,990

$1.5 billion

*BFW & WDOT, 2006, adjusted for inflation

Summary of Findings

Economic Impact of Manufacturing, Sales, & Services*	$593,787,990
Economic Impact of Tourism & Recreation	$924,211,000
Value of Additional Physical Activity	$318,589,585
Value of Air Quality Improvement	$89,214,200
Value of Greenhouse Gas Reductions	$1,157,859

*BFW & WDOT, 2006

- Significant Implications for the State and Region
- Co-Benefits of Replacing Short Car Trips with Bicycling
- Invest in infrastructure to encourage more bicycling in future
- Bicycle recreation – important for Wisconsin’s economy
Thank You!

grabow@wisc.edu